
Lightning Pool:

A Non-Custodial Channel Lease Marketplace

Olaoluwa Osuntokun
roasbeef@lightning.engineering

Conner Fromknecht
conner@lightning.engineering

Wilmer Paulino
wilmer@lightning.engineering

Oliver Gugger
oliver@lightning.engineering

Johan Halseth
johan@lightning.engineering

November 2nd, 2020

DRAFT (commit e30c796)

Abstract

In this paper we examine the core inbound liquidity bootstrapping
problem the Lightning Network faces, and frame it as a resource alloca-
tion problem to be solved by the application of market design and auction
theory. We present Lightning Pool, a non-custodial channel lease market-
place, implemented as a sealed-bid frequent batched uniform clearing price
auction which allows participants to buy and sell capital obligations on
the network. We call these capital obligations channel leases. A channel
lease can be viewed as a cross between a traditional fixed-income asset and
an internet bandwidth peering agreement. Channel leases allow nodes on
the network with idle capital to earn yield (based on a derived per-block
interest rate) by selling channels to other agents in the marketplace. The
duration of such contracts is enforced on-chain using Bitcoin Script. We
construct Lightning Pool using a novel design for constructing overlay
applications on top of Bitcoin: a shadow chain. Shadow chains allow users
to remain in full custody of their funds at all times while also participat-
ing in higher level applications that scale via an optimistic transaction
cut-through protocol.

1

Contents

1 Introduction 4
1.1 Our Contributions . 6

2 Background 6
2.1 Payment Channels & the Lightning Network 6
2.2 Liquidity Boostrapping Problems in the Lightning Network . . . 8
2.3 New Routing Node Boostrapping 8
2.4 New Service Boostrapping . 9
2.5 End User Boostrapping . 10
2.6 Market Design & Auction Theory 11
2.7 Money Markets & Capital Leases 12

3 Bootstrapping Problems as Solved by CLM 13
3.1 Bootstrapping New Users via Sidecar Channels 13
3.2 Demand Fueled Routing Node Channel Selection 13
3.3 Bootstrapping New Services to Lightning 14
3.4 Cross-Chain Market Maker Liquidity Sourcing 14
3.5 Instant Lightning Wallet User On Boarding 14
3.6 Variance Reduction in Routing Node Revenue 15

4 The Channel Lease Marketplace 15
4.1 High-Level Description . 15
4.2 Lightning Channel Leases . 18
4.3 Non-Custodial Auction Accounts 19
4.4 Order Structure & Verification 20
4.5 Auction Design . 22

4.5.1 Auction Specification . 22

5 The Shadowchain: A Bitcoin Overlay Application Framework 24
5.1 High-Level Description . 25
5.2 Comparison To Related Frameworks 26
5.3 The Shadowchain Framework . 26

5.3.1 Shadowchain Orchestrator 26
5.3.2 Lifted UTXOs . 26
5.3.3 The Shadowchain . 27
5.3.4 Shadowchain Operation 30

6 Lightning Pool: A Channel Liquidity Marketplace as a Shadow
Chain 32
6.1 Instantiating a CLM . 32

6.1.1 System Initialization . 32
6.1.2 Lightning Pool Accounts 33
6.1.3 Channel Leases in the Lightning Network 36
6.1.4 Order Structure . 39
6.1.5 Node Rating Agencies . 40
6.1.6 Uniform Price Market Clearing & Matching 40
6.1.7 Auction Batch Execution 42
6.1.8 Sidecar Channel Market Clearing & Batch Execution . . . 45

2

6.1.9 LSAT as Pool Tickets . 46
6.2 The Lightning Pool Shadowchain 46

6.2.1 Lightning Pool Accounts as Lifted UTXOs 46
6.2.2 Auction Batch Proposal 47
6.2.3 Shadowchain Batch Execution 47
6.2.4 Unconfirmed Batch Cut-Through 47
6.2.5 Auction Upgrades . 48

7 Security Analysis 48

8 Future Directions 49

9 Related Work 49

10 Conclusion 50

3

1 Introduction

Lightning Network Bootstrapping Challenges. The Lightning Network
(LN) is the largest deployed Layer 2 payment channel network [1]. A payment
channel network is comprised of a series of individual payment channels, which,
when strung together, enable rapid low-latency payments between participants
in the network. Due to the off-chain nature of these payments (only the final
summary hits the blockchain), the cost of payments on the LN are typically
much lower than an equivalent payment on the base blockchain. In order to
be able to send funds on a network, a user must open a payment channel to
another participant on the network. Once the channel has been opened, both
participants are able to send and receive a nearly unbounded number of pay-
ments off-chain, possibly never closing the channel on-chain. Similarly, in order
to receive on the network, a user requires another individual to open a channel
to the receiver. A participant can only send and receive up to the total amount
of Bitcoin in a channel committed to by both parties. This allocation of capital
by one party to enable another party to receive funds on the network is typi-
cally referred to as inbound liquidity or inbound bandwidth. Because a would-be
user of the network must somehow convince others to allocate capital towards
them in order to receive funds on the network, the inbound bandwidth problem
remains a significant barrier to the adoption and bootstrapping of the Lightning
Network.

Routing Node Capital Requirements. In order to incentivize users to
commit capital to the network so as to help other users of the network send
and receive payments, each time a node forwards a payment successfully they
receive a fee. As commonly implemented, this fee has a fixed base amount to be
paid for all forwards independent of payment size, and a fee rate or proportional
amount that must be paid for each millionth of a satoshi forwarded [22]. We refer
to nodes that join in order to facilitate payments and collect forwarding fees as
routing nodes. In order to forward a payment of size N on the network, a routing
node needs to have Nin+F Bitcoin allocated towards it as inbound bandwidth,
and Nout Bitcoin allocated to another node as outbound bandwidth. The factor
of F is the fee collected by the routing node, with the following constraint being
met F = Nin −Nout. Due to this requirement that there be sufficient inbound
and outbound bandwidth, even those nodes that exist solely to help other nodes
send and receive payments, themselves face the inbound bandwidth allocation
problem, a fundamental bootstrapping issue for the LN.

Market Design Resource Allocation Problems. The field of market
design is a sub-field of economics which is concerned primarily with the efficient
allocation of scarce resources [16] . Within this sub-field, of interest is a branch
of market design concerned with instances wherein money is used to govern the
exchange of goods and services: auction design. Auction design can be used
to effectively allocate scarce resources within a domain. Common established
examples of market design widely used today include: carbon emissions credits,
electricity markets, auctions for airport gates, and wireless spectrum auctions.
In each of these examples, market design is used to allow more effective com-
munication of pricing information, resource availability, and the expression of
preferences. Our first insight is framing the solution to the inbound bandwidth
bootstrapping problem within the lens of market design. In the context of the
LN, the scarce resource we aim to more efficiently allocate is inbound channel

4

bandwidth.
LN Bootstrapping as Resource Allocation Problem. In the absence

of a proper venue, those that need inbound capital to operate their Lightning
services often turn to soliciting capital on various chat groups, forums, or public
venues like Twitter. On the other side, those seeking to deploy capital in order
to facilitate network operation and gain routing fees must guess as to exactly
where their capital is most demanded. As node operators may not necessarily
know where their capital is most demanded, they risk opening channels to lo-
cations where they aren’t actually needed, leading to poor resource utilization
and capital inefficiency. It’s as if node operators are speculatively building roads
that no one will use (why isn’t my node forwarding?), and those seeking to re-
ceive aren’t able to flag their service as an attractive destination to be connected
to internal network ”highways”. Lightning Pool solves this resource allocation
problem using an auction that matches up those seeking to deploy capital (by
opening channels) to those that need these channels to operate their Lightning
Service or business. With each executed batch, the participants of the auction
derive a per block interest rate which is effectively the current lease rate for
capital on the Lightning Network. The auctioneer or an independent agency is
also able to provide Node Ratings to participants of the network, which can be
used to make more informed decisions with respect to the quality of the channel
lease being purchased.

Channel Lease Marketplaces. In this paper, we present Lightning Pool,
a non-custodial channel lease marketplace (CLM) that draws on modern auc-
tion theory to construct an auction that enables participants to buy and sell
inbound channel bandwidth. Participants in the marketplace buy and sell a
channel capital obligation, which we call a Lightning Channel Lease (LCL). An
LCL is similar to a traditional bond in that one party acquires capital from
another for productive use, with the party parting with their capital being com-
pensated for their cost of capital. However as the funds within an LCL can only
be used in the Lightning Network for sending/receiving, an LCL is analogous to
the creation of a new virtual ”road” within the LN connecting two destinations.
Critically, when one purchases an LCL, the period of time those funds must
be committed is enforced on-chain using Bitcoin Script. As a result, buyers of
inbound channel bandwidth can be sure the capital will be committed for a set
period of time. The auction itself contains several sub-auctions for the exchange
of particular duration intervals expressed in blocks (similar to the various U.S
Treasury auctions [3]). A non-trusted auctioneer facilities the marketplace by
accepting sealed-bid orders, clearing the market using a uniform clearing price
for each duration bucket, and finally executing batches of contracts using exe-
cution transactions that update all involved accounts, delivering the purchased
channels to all parties in an atomic manner. Lightning Pool and the LCL solve
the inbound bandwidth problem by allowing participants on the network to
effectively exchange pricing signals to determine exactly where in the network
capital should be allocated.

Shadowchains as an Application Framework. Lightning Pool is the
first application built on top of Bitcoin that utilizes the Shadowchain paradigm
to construct an application-specific overlay system on top of existing Bitcoin
unspent transaction outputs (UTXOs). A user joins a shadowchain by creating
a special multi-signature based output using a public key provided by the tar-
get shadowchain manager. Once a user has joined the shadowchain, proposed

5

state transitions are packaged up (in the form of a block) by the shadowchain
manager and proposed to each active participant. A shadowchain block updates
the application state of all participants and is embedded within a normal Bit-
coin transaction. Depending on the application, a shadowchain block may be
indistinguishable from a normal Bitcoin transaction. Shadowchains are able to
compress state transitions off-chain by employing a form of multi-party trans-
action cut-through [14]. As participants of a shadowchain remain in custody of
their funds at all times, complex fraud proofs or exit games are unnecessary,
significantly simplifying the implementation of a given shadowchain. We note
that the shadowchain concept itself can be used for other applications as well.

1.1 Our Contributions

In summary, we make the following contributions:

� We propose a solution to the inbound bandwidth problem of the LN in
the form of a marketplace to buy and sell inbound bandwidth obligations.

� We propose the Lightning Channel Lease, an inbound bandwidth obliga-
tion contract that pays a per-block interest rate to the seller from the
buyer, and whose duration is enforced on-chain with Bitcoin Script.

� We put forth the concept of a Node Rating agency for channel leases
in order to provide marketplace participants with information about the
quality of a channel lease.

� We construct a new system, Lightning Pool, which is a non-custodial
marketplace with off-chain order submission and on-chain batch execution
that allows parties to exchange LCLs in an atomic manner.

� We design a new Bitcoin application design framework, the shadowchain,
which can also serve other applications.

2 Background

In this section, we aim to introduce some necessary background that will be built
upon in later sections to construct our solution. First, we’ll describe multi-
hop payment channels and the Lightning Network as deployed today. Next,
we’ll explore the nature of the inbound bandwidth bootstrapping problem the
Lightning Network faces today. Along the way, we’ll explain the dynamics of
routing nodes in the network, as they’re a key component of the system. Next,
we introduce the field of market design and more specifically the sub-field of
auction design, to demonstrate how auction design can be used to solve resource
allocation problems in the real world. Finally, we provide some brief background
on money markets in the traditional financial system, and how this relates to
our concept of channel leases.

2.1 Payment Channels & the Lightning Network

Basic Payment Channels

6

A payment channel in its simplest form is an on-chain 2-of-2 multi-signature
output created by parties A and B. One or both parties deposit funds into a
Bitcoin Script output constructed using two public keys Pa and Pb. The transac-
tion that creates this multi-sig output is referred to as the funding transaction.
Before broadcasting the funding transaction, another transaction dubbed the
commitment transaction is constructed using a series of agreed upon parame-
ters by the two parties [21]. The commitment transaction spends the funding
transaction and creates two new outputs Da and Db that if broadcast, will de-
liver the up-to-date balances allocated between the parties to the channel. Once
the funding transaction is confirmed and broadcasted, both parties are able to
rapidly update the balance of the delivery outputs, Da and Db so as to facilitate
efficient payments between the parties.

Bi-Directional Payment Channels

In order to safely make bi-directional payments between both parties to a
payment channel, modern channel designs also employ a commitment inval-
idation mechanism [2] to ensure that only the latest commitment transaction
state can be broadcasted and redeemed via the underlying blockchain. The most
commonly used commitment invalidation scheme is the replace-by-revocation
construct. In this construction, during channel negotiation, a security param-
eter T (which may be asymmetric for both parties) is negotiated. Using this
value T which is typically expressed in blocks, a commitment transaction state
can only be fully redeemed by the broadcasting party after a period of T blocks
has passed. During this interval, the non-broadcasting party Pdefender is able
to provide the contested delivery output Dai with a valid witness Wrn which
proves that there exists a newer state n with n > i that has been ratified by
both parties. The exact details of this construct are outside the scope of this
paper, but Bitcoin Script and basic cryptography are used to allow a defending
party to present an objective statement of contract violation by the opposing
party.

Hash Time Lock Contracts & Multi-Hop Payments

The final component of modern multi-hop payment channels is the Hash
Time Locked Contract, or the HTLC. The HTLC enables payments to travel
over a series of payment channels, allowing a set of interlinked payment chan-
nels to be composed into a logical payment network. An HTLC can be viewed
as a specific case of a time locked commit and reveal puzzle. Loosely, an HTLC
consists of four parameters: the public key of the sender Ps, the public key of the
receiver Pr, the payment amount expressed in satoshis Asat, a payment secret
r s.t H(r) = h, and an absolute block timeout T . Given these parameters, a
Bitcoin Script is set up such that, the funds deposited in the script hash output
can be redeemed by the receiver Pr via a public key signature by their public
key and the revelation of the payment pre-image r, or by the sender Ps after
the absolute timeout T has elapsed. This construct can be chained by several
parties (up to 20 in the modern Lightning Network [20]) to create a multi-hop
payment within the network. One implication of this security model is that each
party must ensure that their outgoing hash lock puzzle’s absolute timelock To

7

is offset from the incoming absolute timelock Ti by a value of Cdelta. This value
Cdelta is commonly referred to as the CLTV delta [22]. This value Cdelta is an
important security parameter, as if Cdelta blocks passes and the outgoing hash
lock isn’t fully resolved, then a race condition occurs as the time out clauses of
both the incoming and outgoing hash locks have expired.

Routing Nodes as Profit-Seeking Capital Allocators

Entities on the Lightning Network that exist primarily to collect fees for
successfully forwarding payments are referred to as routing nodes. A routing
node commits capital to the network within payment channels in order to be able
to facilitate payments in the network. As routing nodes incur an opportunity
cost by committing capital to the network, they specify a fee F to be paid upon
completion of a successful payment forward. This fee F = Fbase + Frate · Asat
is comprised of two parts: a proportional amount (a rate) and a fixed amount,
which are both expressed in millisatoshis, which are 1/1000 of the base satoshi
unit.

Note that routing nodes are not compensated on an ongoing basis, and are
not compensated for anything other than a completed payment. As a result,
many routing nodes may be allocating capital in a non-productive manner [5]
as they’ve speculatively opened channels to areas of the network where no true
transaction demand exists. If the Lightning Network was a physical transporta-
tion network, then it would be as if eager contractors started building roads
to seemingly random destinations, only to find that those roads weren’t actu-
ally demanded at all. This information asymmetry (where new channels are
actually demanded) and the current inability for today’s network participants
to exchange these key demand signals lies at the crux of the bootstrapping
problems of the Lightning Network.

2.2 Liquidity Boostrapping Problems in the Lightning Net-
work

In this section, building on the background provided above, we aim to detail the
various liquidity bootstrapping problems that exist in the Lightning Network
today. These problems will serve motivation for our solution, the Channel Lease
Marketplace, and a specific instantiation of such a construct: Lightning Pool.

2.3 New Routing Node Boostrapping

As the Lightning Network is a fully collaterized network, in order to join the
system, a participant must commit capital in the form of Bitcoin charged into
payment channels on the network. Routing nodes, however, are in a unique
situation, as they need to both commit their own capital to the network, as well
as solicit committed capital from other routing nodes. This is due to the fact
that in order to be able to forward a payment of size Psat, the routing node must
first have Psatout satoshis committed as outbound payment bandwidth (to use
for sending) and Psatin committed as inbound payment bandwidth, with the dif-
ference of the two amounts, F = Psatin −Psatout being collected as a forwarding
fee upon payment completion. This pair-wise capital commitment requirement

8

is commonly cited as a major barrier to Lightning Network adoption, as well as
why large ”hubs” are inherently economically inefficient.

A routing node operator faces two key questions when attempting to join the
network in a productive manner, while also attempting to optimize for capital
efficiency:

1. Where should I open channels (thereby committing outbound capital)
within the network in order to maximize the velocity of transactions
through my channels, along with the corresponding fee revenue Fr?

2. How can I attract other routing node operators to commit capital to my
node such that I can actually forward payments to earn any revenue Fr?

We argue that the above two questions, optimizing for capital efficiency and
velocity of committed channels, can only properly be addressed by the existence
of a marketplace that allows agents (routing node operators) to communicate
their preferences using demand signals. Intuitively, a channel open to an un-
desirable location (possibly over-served) will have low transaction velocity Cv,
and result in overall lower total fee revenue Fr. In order to maximize both
Cv and Fr, a routing node should only open channels to where they’re most
demanded. If an agent is willing to pay up to Ppremium Bitcoin for inbound
bandwidth, then they must gain more utility than the paid premium Ppremium,
as otherwise, such a transaction would not be economically rational. Thus, the
existence of a marketplace that allows routing nodes to efficiently commit their
outbound capital, as well as purchase new inbound capital is a key component
to solving the boostrapping problem for routing nodes.

2.4 New Service Boostrapping

If routing nodes are the backbone or highway of the Lightning Network, then so
called Lightning Services are the primary destinations for a given payment. For
simplicity, we assume that a given Lightning Service is primarily a payment sink,
in that it’s primarily receiving over the LN. Eventually, it may become common
for a service to be balanced in terms of sending and receiving, resulting in a net-
flow of zero, but today in the network, most flows are uni-directional, creating
the need for on/off chain bridges such as Lightning Loop.

Demand for Incoming Bandwidth

Focusing on the case of a Lightning Service that’s primarily a payment sink,
in order to receive up to N Bitcoin, the service requires Sb Bitcoin to be com-
mitted as inbound capital, with Sb > N . Otherwise, assuming only channel
churn, all inbound bandwidth will become saturated, rendering a service unable
to receive additional Bitcoin over the LN. Therefore, the operative question a
service operator needs to ask when attempting to join the network is:

� How can I solicit enough inbound bandwidth to be able to receive up to
Sb Bitcoin?

Preference for Quality of Bandwidth

9

It’s important to note, that as operating a valid routing node on the network
requires a degree of skill and commitment, some routing nodes are able to
provide more effective service than others. As an example, imagine a routing
node Bob, who has sufficient capital committed to his node in both the inbound
and outbound directions, but who is chronically offline. As a node must be
online in order to be able to forward payments, any capital committed by Bob,
can essentially be considered dead weight. With this insight in mind, we revisit
the bootstrapping questions of the Lightning Service to also require a high
quality of service:

� How can I solicit enough high quality inbound bandwidth within the net-
work to be able to receive up to Sb Bitcoin?

Time Committed Incoming Bandwidth

However, from the point of view of an active Lightning Service, just having
sufficient high quality inbound bandwidth may not be enough. Consider that a
high quality node Carol may erroneously decide to commit capital elsewhere,
resulting in overall lower channel velocity Cv for their channels. This type of
fair-weather behavior serves as a detriment to our Lightning Services; they’re
unable to properly plan for the future, as they don’t know how long the inbound
bandwidth will be available for receiving payments. As a result, it’s critical that
the Lightning Service has a hard guarantee with respect to how long capital will
be committed to their node. Taking this new criteria into account, we further
revisit our new service boostrapping problem statement:

� How can I solicit enough high quality inbound bandwidth to be able to
receive up to Sb Bitcoin, that will be committed for at least time Tblocks?

Summarizing, in addition to the existence of a marketplace for buying and
selling capital commitment obligations, a would-be buyer requires some sort
of rating system to reduce information asymmetry (distinguish the good nodes
from the lemons), and also requires that any capital committed must be com-
mitted for a period of Tblocks. These new requirements argue for the existence
of a Node Rating agency, as well as a facility that ensures that capital will be
committed for a set period of time in a trust-minimized manner.

2.5 End User Boostrapping

Finally, we turn to the end users of the system. In our model, the end users of
the system are those that are frequently transacting. If routing nodes are the
highways in our payment transportation network, with Lightning services as
popular destinations, then users trigger payment flows that traverse the back-
bone created by routing nodes, to arrive at the Lightning services. Note that
within our model, we permit end users to both send and receive. Compared to
boostrapping a new user to a Layer 1 system such as the Bitcoin blockchain,
boostrapping to a Layer 2 system like the Lightning Network presents addi-
tional challenges. The core challenge is created by the constraint that in order
for a user to send Ks Bitcoin, they also need Ks Bitcoin committed within the
network. Similarly, in order to receive up to Kr Bitcoin, they need up to Kr

Bitcoin committed as inbound bandwidth.

10

From the perspective of attempting to achieve a similar user-experience as
a base Layer 1 system, the receiving constraint is the most challenging. Notice
that a user cannot simply download a Lightning wallet and start receiving funds.
Instead, they need to first solicit inbound capital to their node first. Many wal-
let providers such as Breez and Phoenix have started to overcome this issue
by committing capital to the users themselves. This is essentially a customer
acquisition cost: by providing this inbound bandwidth to users, the wallet be-
comes more attractive as it enables both sending and receiving. However, just
receiving isn’t enough. A user needs to be able to send and receive. In addition
to this required symmetry, a typical user also has all the same quality of service,
and time-committed capital requirements as well.

With this background, we can phrase the end user boostrapping problem as
follows:

� How can a new user join the Lighting Network in a manner that allows
them to both send and receive to relevant destinations in the network?

2.6 Market Design & Auction Theory

In this section, we make a brief detour to the economic field of auction design
to examine how similar resource allocation problems have been addressed by
market design in existing industries. These examples include both digital and
physical goods. In the modern age, market design and proper construction of
corresponding auctions can be used to improve resource utilization and capital
efficiency [16]. Within a particular domain, context-specific design decisions can
be made so as to better optimize resource allocations for all participants. Com-
mon uses of auction design in the wild include wireless spectrum auctions by the
Federal Communications Commission (FCC), package auctions for auctioning
off takeoff and landing rights at airports, real-time electricity markets, and also
carbon credits. Market design bridges both theory and practice in order to solve
real-world resource allocation constraints [15].

A commonly used tool in the field of market design is the concept of auctions.
Auctions allow agents to gather and exchange pricing signals in order to deter-
mine who gets which goods, and at which price. The design of a proper auction
for a particular resource allocation problem has a vast design space. For exam-
ple, should a first or second price auction be used [11]? How frequently should
the auction run? What type of auction should be used? Should participants be
able to see the bids of other participants? And so on.

Building off the series of boostrapping problems posed above, we turn to
market design as a tool to efficiently allocate our scare resource in question:
inbound channel bandwidth. Our problem-space is unique, however, in that
as we’re dealing with the allocation of capital, there are inherent opportunity
costs: why should a routing node commit capital to the Lightning Network,
compared to some other asset that has a similar risk adjusted rate of return?
In this context, our end solution may take the form of a money market, which
is used by entities to trade short-term debt instruments.

11

2.7 Money Markets & Capital Leases

In traditional financial markets, money markets are used to allow entities to
trade short term debt instruments. Examples of such instruments include U.S
Treasury Bills, certificates of deposit, and repurchase agreements. Capital mar-
kets on the other hand, are the long-term analogue of money markets, in that
they deal with longer timeframes, and also are more heavily traded on secondary
markets with retail traders being more involved.

In the context of the Lightning Network, our concept of capital obligations
appears similar to a bond, in that we require a period of time for which capital
is allocated. However, unlike a bond, the committed funds can only be used
on the Lightning Network to provide a new type of service: the propensity to
receive or send funds on the network. As a result, we don’t require funds in
channels to be borrowed, instead they only need to be leased for a period of
time. Also unlike bonds, wherein it’s possible for the issuer of a bond to default,
thereby failing to repay the borrowed money, in the context of the LN, there is
no inherent default risk. Instead, arguably the concept of channel leases can be
viewed as a risk free rate of return in the context of Bitcoin, and specifically in
the context of the Lightning Network.

The existence of a channel lease serves to provide routing nodes with an
additional monetary incentive (in the form of a premium paid by the lessee of
the coins) to operate a routing node. As a result, we can model the revenue Rc
earned by a routing node for a given channel C, as a function of the lease interval
T and channel size Asat. Factoring in transaction values during the interval (as
routing fee revenue is a function of them), we assume that transaction values
fall in the range of: [1, Asat] satoshis and follow a distribution K. Given these
considerations, we express the revenue of a given routing node as:

Rc(T,Asat) = (Pc · T ·Asat) +

Asat∑
k=1

Pr[K = k]

∫ T

i=0

Fc(k) ·Xt(k,C) dt (1)

where Pc is the current per-block interest rate, (Fc(k) · Xt(C)) is the ex-
pected routing fee revenue of the channel within that interval, for a payment
of k satoshis, and Xt(k,C) is a function describing the random event of a pay-
ment of k satoshis passing through the channel C on the outgoing edge during
a time-slice t.

Our model is similar to the one put forth in [32], however were concerned with
the fee revenue over an interval rather than the gain of an objective function.
We reference an expectation for fee revenue, as fees are effectively a speculative
component of the routing revenue of a node. If a channel was allocated to a
node in high demand, one would expect the latter portion of the question to
possibly dominate the premium. If the opposite is the case, then a routing node
would derive most of its revenue from the yield earned by leasing a channel. In
this manner, the existence of a concept such as a channel lease actually serves to
reduce the variance in a routing node’s revenue, similar to how joining a mining
pool can reduce the variance of a Bitcoin miner’s earnings [12].

Finally, we argue that the existence of a channel lease that pays a pre-
mium based on a per-block interest rate would result in a novel low-risk yield-
generating instrument for the greater Bitcoin network. Such a per-block interest

12

rate rbi would serve to allow market participants to effectively price the cost of
capital on the Lightning Network. Assuming the existence of varying durations
D1, ..., Dn, a yield curve conveying the relative short and long term interest
rates of channel yields could be constructed. Such an instrument would then
potentially serve as the basis for higher level structured products and derivates
built on top of the base channel lease instrument.

3 Bootstrapping Problems as Solved by CLM

Prior to outlining our design for a channel lease marketplace, we seek to provide
a set of real-world cases that demonstrate the benefit of such markets for the
Lightning Network.

3.1 Bootstrapping New Users via Sidecar Channels

A common question concerning the Lightning Network goes something like:
Alice is new to Bitcoin entirely, how can she join the Lightning Network with-
out making any new on-chain Bitcoin transactions? On-boarding for a non-
Lightning Bitcoin user is as simple as sending coins to a fresh address. For off-
chain payment channel networks to achieve widespread usage, a similar, seamless
on-boarding flow should exist.

We frame the solution to this use case in our model of channel liquidity
markets. In this case, Alice is a new user to the network that requires inbound
and outbound liquidity. Without outbound liquidity, she’s unable to send to any
other node on the network. Without inbound liquidity, she’s unable to receive
payments via the network. ”Sidecar channels” allow an acquaintance of Alice,
let’s call her Carol, to engage in a protocol with an existing routing node on the
network, Bob, to provide both inbound and outbound liquidity for Alice. Carol
is able to provide liquidity with an off-chain, or on-chain payment. At the end
of the engagement, Carol has provided channel liquidity to Alice via Bob, who
himself is compensated accordingly for his role in the protocol.

3.2 Demand Fueled Routing Node Channel Selection

A ”routing” node on the Lightning Network is a node categorized as having a
persistent, publicly reachable Internet address, a set of inbound channels from
leaf nodes, and an intention to actively facilitate payment flows on the network
in return for fee revenue. A common question asked in the initial bootstrapping
phase of the Lighting Network by node operators is: ”where should I open
my channels to, such that they’ll actually be routed through”? We posit that
channel liquidity markets provide the answer to this question.

Channel liquidity markets can be combined with autopilot [?] techniques
that automatically manage channel creation based on static and dynamic graph
signals. A key drawback of autopilot techniques alone is that for the most part,
they’re devoid of economic context. A particular location in the sub-graph may
be ”fit” or attractive from a graph theoretic perspective, but may not lead to
a high velocity channel, as there might not be inherent demand for a channel
created at that particular location. Using a CLM, a node operator can enter
a targeted venue to determine what the time value of his liquidity is on the

13

network. New services such as exchanges or merchants on the network can bid
for the node’s liquidity in order to serve their prospective customers, with the
node earning a small interest rate up-front for committing his liquidity in the
first place (scaled by the worst-case CSV delay).

3.3 Bootstrapping New Services to Lightning

Any new service operator or merchant that wishes join the Lightning Network
faces the same problem: ”How can I incentivize nodes to create inbound channels
to my node in order to be able to accept payments?”. CLMs provide an elegant
solution. The merchant/exchange/service uses their existing on-chain funds to
enter the liquidity marketplace in order to exchange their on-chain coins for
off-chain coins. Once the trade has been atomically executed, the merchant
immediately has usable inbound liquidity that can be used to accept payments
from users. As the merchant acquires more liquidity and more channels in the
future, they make additional contributions to the path diversity and strength of
the network.

3.4 Cross-Chain Market Maker Liquidity Sourcing

As currency traders become more aware of the counterparty risk of trading on
centralized exchanges, they become more motivated to find non-custodial ex-
change venues. The flexibility of channels on the Lightning Network make it a
desirable platform for such a venue: channels allow for non-custodial trading at
similar execution speeds to that of centralized exchanges. Additionally, chan-
nel based non-custodial exchanges are not vulnerable to front-running tactics
executed by miners that can occur with other non-custodial concepts. Instead,
the trade execution and even the prior trade history are only known to the
participants, providing a greater degree of financial privacy.

Once again, we encounter a bootstrapping issue. How is a market maker on
a payment channel-based non-custodial exchange meant to gather an initial pool
of liquidity to service orders? We see CLMs as a natural solution. The market
maker can seek out liquidity for relevant trading pairs by purchasing inbound
channel liquidity, in addition to putting up its own outbound channel liquidity
to other market makers. A balanced distribution of liquidity amongst market
makers allows for new traders to participate in the exchange, knowing that their
flows are balanced, meaning they can receive as much as they can send via the
market maker, allowing them to instantly start to execute cross-chain atomic
swaps.

3.5 Instant Lightning Wallet User On Boarding

Wallets commonly face the UX challenge of ensuring that a user can receive
funds as soon as they set up a wallet. Some wallet providers have chosen to
open new inbound channels to users themselves. This gives users the inbound
bandwidth they need to receive, but can come at a high capital cost to the wallet
provider as they need to commit funds at a 1:1 ratio. A CLM like Lightning Pool
would allow wallet developers to lower their customer acquisition costs, as they
would need to pay a relatively small amount relative to the volume of liquidity to
be allocated to a new user. Just like the merchant purchasing inbound liquidity

14

in the above segment, a wallet provider could pay something like one thousand
satoshis to have one million satoshis allocated to a user, instead of fronting the
entire one million satoshis themselves.

3.6 Variance Reduction in Routing Node Revenue

Today, routing node operators aim to join the network in order to facilitate the
transfer of payments as well as to earn fees over time by successfully facilitating
payments. However, if a node isn’t regularly routing payments (thereby earning
a forwarding fee), then they aren’t compensated for the various (though minor)
risks they expose their capital to. With Pool, routing node operators are able
to ensure that they’re predictably compensated for the cost of their capital.

4 The Channel Lease Marketplace

In this section, we present an overview of the Channel Lease Marketplace archi-
tectural design. In section 6, we make a brief detour to define the Shadowchain
application framework, before presenting a concrete instantiation of a CLM in
the form of Lightning Pool.

4.1 High-Level Description

First, we describe our solution at a high-level. Drawing heavily from existing
market auction design, we’re interested specifically in double-call auctions that
allow both the buyer and the seller to transact indivisible units of the good in
question, which in this case is a channel lease. We then build upon this base
double-call auction by leveling the informational playing field [6] by making all
orders sealed-bid. Rather than the auction being cleared continually within a
central-limit order book, we instead opt to utilize a discrete interval, frequent
batched auction so as to mitigate front-running and other undesirable side effects
[24]. Rather than participants paying what they bid (commonly called a pay-
as-you-bid auction), all participants will instead pay the same uniform clearing
price. Finally, all operations that result from a successful auction are batched
and committed in a single atomic blockchain transaction.

15

Account Creation Order Submission

Match Making

Market Clearing

Batch Execution

batch tick

no market

market made

market cleared

restart

Figure 1: Auction State Machine

Marketplace Auctioneer

We assume the existence of a non-trusted auctioneer Λ that publishes a
master auctioneer key Aauction ahead of time. The auction itself is uniquely

16

identified by Aauction from the perspective of the system due to its Shadowchain
qualities. The auctioneer implements a non-custodial auction via Marketplace

Accounts that use a new unique key derived from Aauction as the second public
key in the 2-of-2 multi-sig. The auctioneer accepts and validates orders off-chain,
facilitates required account modifications, proposes a valid batch to each of the
agents matched in an instance of the auction, and produces a batch execution
transaction that creates the series of corresponding channel leases.

Account Creation

Before being able to participate in the marketplace, we require that an
agent first create a Marketplace Account. A Marketplace Account is a non-
custodial account that forces an agent to commit capital in the form of Bitcoin
to the market for a period of time. As we require agents to fully back all orders
within an account, we eliminate a number of order spoofing vectors. Addition-
ally, the time-locked, non-custodial nature of the account ensures a user is able
to recover their funds fully without any additional on-chain transactions (aside
from the sweeping transaction).

Marketplace Order Units

We abstract over the base Bitcoin satoshi unit and define a unit from the
point-of-view of the marketplace that serves as the base unit that all orders
are expressed in and settled in. We assume that the value of a given unit is
set such that even a single lease of the smallest unit is still economical from
the perspective of the base blockchain and on-chain fees. All orders must be
divisible by a whole unit, and the final clearing volume of a given batch is also
expressed in these units.

Order Submission

Once an agent has created a valid Marketplace Account, they can enter
the order submission phase. It’s important to note that this order submission
takes place off-chain. Only the final execution of an auction batch takes place
on-chain. During the order submission phase, agents are free to modify their
accounts and orders. Only valid orders will be accepted as eligible for the next
auction iteration.

Market Clearing

Every Υ minutes, the auctioneer attempts to clear the marketplace. An
auction can be cleared if the lines of supply and demand cross such that at least
a single unit is bought/sold. As the market has no explicit closing time, it’s
possible that during a market epoch, no market can be made. In the scenario
that a market can be made, rather than each participant paying what they bid,
the auctioneer instead uses a single clearing price based on the market’s clearing
price algorithm.

Batch Execution

17

Once a market has been cleared, the batch execution phase begins. During
this phase, the auctioneer sends a batch proposal Π, which describes the pro-
posed market clearing structure. Π may either be a plaintext description of a
valid clearing solution, or an ”argument” describing one. Valid batches are then
bundled into a single Batch Execution Transaction that updates all involved
accounts, and creates any channel leases initiated within the batch. After a
period of time Υ has elapsed, the market is restarted with any new orders and
accounts being considered for market clearing.

4.2 Lightning Channel Leases

Liquidity Maker & Taker

We begin by introducing the concept of a Liquidity Taker:

Definition 4.1. (Liquidity Taker). A Liquidity Taker is an agent in a Channel
Liquidity Market seeking to obtain new inbound channel liquidity of size Asat
for a period of Tblock Bitcoin blocks.

A taker is prepared to either boostrap the inbound liquidity with their own
on-chain coins, or pay a premium in order to receive a ”lease” of liquidity from
another agent in the market. Takers populate the demand side of our market.
They require new inbound liquidity in order to be able to immediately receive
payments on the network, or to better position themselves as a routing node
within the network.

A natural companion to the Liquidity Taker agent within a CLM is the
Liquidity Maker:

Definition 4.2. (Liquidity Maker).
A Liquidity Maker is an agent in a Channel Liquidity Market seeking to earn

yield by deploying up to Asat Bitcoin into the Lightning Network for up to a
period of Tblock Bitcoin blocks, earning a profit α.

Notice that we utilize Bitcoin block-time rather than wall-clock time (Median
Past Time) [17] in these definitions, as we seek to enforce these durations using
Bitcoin Script and using block-time is more objective compared to wall-clock
time.

The profit (α) earned by a Liquidity Maker takes two forms:

� A one-time premium, Rpremium, commanded by the Maker which reflects
the latent demand and time-value of regular coins vs ”lifted coins” (coins
placed in channels).

� Ongoing recurring revenue, Fc, in the form of forwarding fees earned by
facilitating payments to their matched taker.

We argue that the existence of such Channel Liquidity Markets will increase
the efficiency of capital deployed to a payment channel network by allowing
agents to signal the relative demand of lifted coins compared to non-lifted coins.
Additionally, such markets also allow an existing routing node on the network
to re-allocate lifted coins from a low-velocity section of the sub-graph, to one of
higher velocity:

18

Theorem 4.1 (Channel velocity revenue). Holding all channel liquidity equal,
channels allocated to a higher velocity section of the sub-graph will yield a
higher Fc than channel allocated to a low-velocity section of the sub-graph.

Intuitively, if each payment flow sourced at an incoming channel Ci and sunk
at an outgoing channel Co pays an equal forwarding fee per flow, then for a fixed
unit of time, a higher velocity channel will result in higher total revenue in a
time slice.

The role of Channel Liquidity Markets in a payment channel network is to
reduce information asymmetry by allowing agents to signal their preferences for
lifted coins vs non-lifted coins. The existence of venues where these markets
can be carried out benefits the wider network by allowing agents to determine
where their liquidity is most demanded on the network.

Channel Leases

With our two primary agents defined, we now move on to the definition of
a Lightning Channel Lease:

Definition 4.3. (Lightning Channel Lease). A Lightning Channel Lease is
defined as, Γ = {PT , PM , Asat, Dblock, ri}, where:

� PT is the secp256k1 public key of the Liquidity Taker.

� PM the public key for the Liquidity Maker.

� Asat is the total amount of Bitcoin within the contract.

� Dblock is the duration of the contract expressed in Blocks.

� ri is the per-block interest rate as discovered in the ith instance of the
market.

Note that the premium RP as referenced above is parametrized in using the
lease duration Dblocks: RP (Dblocks) = ri · Dblocks as we deal in simple, rather
than compounding, interest. The duration of the contract Dblocks is of great
interest, as similar to U.S Treasury auctions, a yield-curve can be constructed
based on the matched contents of a given auction iteration.

4.3 Non-Custodial Auction Accounts

In order to participate in the auction, we require all participants to deposit their
trading balance into a Marketplace Account:

Definition 4.4. (Marketplace Account). A marketplace account is a non-
custodial account defined as, Ψ = {Ksat, Tblocks, Pacct,Ωnodes} where.

� Ksat is the total amount of Bitcoin available within the account.

� Tblocks is the absolute expiry height of the account.

� Pacct is a secp256k1 public key that uniqely identifies the account.

� Ωnodes is a set of Lighting Network nodes controlled by the account.

19

We stress that these accounts are non-custodial in that after a period of
time Tblocks the agent is able to freely remove the funds from their account.
Before this period has passed, an agent may require the participation of the
auctioneer to close, deposit, or withdraw funds from their account. In the case
of the Liquidity Taker, the funds within the account Ksat, must be sufficient
to pay for any premium bids. Conversely for the Liquidity Maker, funds to
leased must be deposited into the account.

This structure, which forces all participants to fully commit all funds they
wish to use within the marketplace into a non-custodial account, is similar to
the concept of Fidelity Bonds [13]. This structure has a number of desirable
properties including:

� Order spoofing mitigation: Within the CLM, as all orders must be
”fully backed”, it isn’t possible to place a ”fake” order that cannot be
filled.

� Time value opportunity cost: By forcing all agents to suspend funds
they wish to use within the market, those funds cannot be used elsewhere,
thereby adding an implicit cost to joining the marketplace.

� Deterministic batch execution construction: As we’ll see in later
sections, the existence of a fixed account for each agent simplifies the
clearing and execution process within the auction lifecycle.

These accounts in the abstract may take many forms, but as we focus on
Bitcoin, as detailed in later sections, these accounts will take the form of a
multi-signature output, with one key belonging to the auctioneer and the other
belonging to the the bidding participant.

4.4 Order Structure & Verification

With our channel lease contract and account structure defined, we now move on
to our order structure. As with any auction, orders are how the agents express
their preferences with respect to what they wish to buy and sell. Importantly,
all orders within the market must be backed by a valid non-expired account,
and must carry an authentication tag which prevents order spoofing, and also
ensures proper integrity of a given order once it has been submitted.

Order Structure

We define an Order within the context of a CLM as follows:

Definition 4.5. (Order). An Order is a authenticated n-tuple:
Θ = {Otype,Knonce, Vver, Pacct,∆base,∆aux, Tauth}, where:

� Otype ∈ {Ask, Bid} denotes if an order is an Ask or a Bid. In addition to
the version, this may affect how the ∆aux attribute is parsed.

� Knonce is an order nonce which uniquely identifies this order, and is typ-
ically derived as Knonce = ←$Z2λ .

20

� Vver is the version of this order. As we’ll see below, the version is used as
an upgrade mechanism, and is needed in order to parse any newly added
fields, as well as compute the digest required to check the authentication
tag attached to an order.

� Pacct is the public key that uniquely identifies this account.

� The set of base order details is:
∆base = {αrate, Asat,Mpub, Lpub, Aaddr, Ctype, Dblocks, Fchain}, where:

– αrate is the desired per-block rate that the owner of the order wishes
to buy or sell a channel lease at. Further below, this may be referred
to as the BPY or block percentage yield.

– Asat is the total contract size expressed in lease units. Restricting
orders to whole units simplifies preference matching within the sys-
tem.

– Mpub is the multi-sig public key to be used when creating the funding
output of the channel.

– Lpub is the identity public key of the Lightning Node that wishes to
buy/sell this channel.

– Aaddr is the network address to be used to connect to the backing
Lpub to initiate the channel funding process if this order is matched.

– Ctype is the type of channel to be created if this order is matched.

– Dblocks is the target lease duration of the contract.

– Fchainmax is the max chain fee expressed in sat/vbyte that the owner
of said order is willing to pay within a batch.

� The set of auxiliary details is implicitly defined by the order version Vver.

� Tauth is an authentication tag that allows the auctioneer, and other traders
to validate the integrity and authenticity of the order.

An order allows a Liquidity Taker or a Liquidity Maker to express their
preference with respect to what type of channel lease they’re looking to buy or
sell.

Order Validation

Returning back to our tag Tauth, we will now specify how such a tag is
to be computed, and verified. In the abstract, we require that the tagging
scheme is SUF-CMA secure. Given this security requirement, we define two
polynomial-time algorithms: (GenOrderTag, VerifyOrderTag) with the follow-
ing requirements:

� GenOrderTag(Pacctpriv,Θ) → Tauth. Given an input of the private key
that corresponds to the public key of an account, and the complete order
details, a valid tag Tauth is generated.

� VerifyOrderTag(Pacct,Θ, Tauth)→ b. Given a public key of an account
holder, a valid tag, and the order itself, VerifyOrderTag outputs b = 1 if
the tag is valid.

21

As we use a public-key based tagging technique, the validity of an order
is verifiable by any other active trader within the marketplace including the
auctioneer of the marketplace.

4.5 Auction Design

In this section, we describe the abstract definition of a Channel Liquidity

Marketplace, which addresses each of the issues presented in the bootstrapping
section of the background, by creating a new form of batched auction which
allows Liquidity Takers and Liquidity Makers to buy and sell Lightning
Channel Leases in a non-custodial manner.

4.5.1 Auction Specification

We’ll now specify the behavior and requirements of an using abstract Channel

Liquidity Marketplace instance. We define the expected behavior and the
client-facing interface of a CLM instance. A CLM is a tuple of polynomial-time
algorithms divided into five distinct but related categories:

� System Initialization: SystemInit

� Account Operations: (NewAccount, ModifyAccount)

� Order Book Maintenance: (SubmitOrder, CancelOrder)

� Market Clearing: (MatchMake, MarketClearingPrice, ClearMarket)

� Batch Execution: (ConstructBatch, ExecuteBatch)

With behavior and semantics as expressed below.

System Initialization

Before the marketplace can be used, we require it to be initialized by the
auctioneer. This initialization is a one-time process, and doesn’t result in any
trapdoor or ”toxic waste” material being produced:

SystemInit(1λ,Υmin) → (Pauctionp , Pauctions ,ΨA). Denoting the security
parameter as λ, the SystemInit algorithm takes as input the security param-
eter, and the batch interval Υmin expressed in minutes, and outputs a public
(Pauctionp) and private (Pauctions) key pair for the auctioneer. The auctioneer’s
public key will be used as a parameter in algorithms related to account creation,
modification, and batch execution. This algorithm also returns ΨA, which is a
special account owned by the auctioneer that will be used to collect fees, and
during batch construction.

Account Operations

In order to create an account, agents will need to interact with the auctioneer
itself. After account creation, an account can be modified freely (close, deposit,
withdraw, etc.) if the account isn’t part of an active batch:

22

NewAccount(1λ, Pauctionp) → Ψ. The NewAccount algorithm takes as input
our security parameter, and the auctioneer’s public key, and outputs a new ac-
count for the new agent within the marketplace. We require that all resulting
accounts within the marketplace be unique. We permit a single logical agent to
have multiple accounts.

ModifyAccount(Ψ, Pauctionp)→ (b,Ψ′). The ModifyAccount algorithm takes
an existing valid account Ψ and the auctioneer’s public key and performs an
account modification. The algorithm returns b = 1 if the modification was suc-
cessful, and b = 0 otherwise. An account modification may fail if the target
account is already part of a pending batch. An account modification can either:

� Deposit new coins into the account.

� Withdraw coins from the account.

� Close the account by removing all coins from the account.

Note that as each of these operations requires an on-chain transaction, they
can be freely batched with other on-chain transactions, or even the batch trans-
action that executes an auction.

Order Book Maintenance

Once accounts in the marketplace are open, agents are able to submit orders
between batch epochs. The size of all orders is expressed in units, and as we
mention below, we permit partial matches of an order. A partial match can
either update the order state in place, or require that the agent re-submit a new
valid tag for the modified order in the batch execution phase:

SubmitOrder(Θ, Tauth) → b. The SubmitOrder algorithm takes as input a
structurally sound order Θ, and its authentication tag Tauth and outputs a bit
b. The bit b = 1 if the order is valid according to market place rules, and the
VerifyOrderTag returns b = 1 given the specified parameters.

CancelOrder(Θ,K ′
nonce) → b. The CancelOrder given an existing order Θ

and the opening of the Knonce commitment K ′
nonce and returns b = 1 if the

commitment opening is valid, and there exists an order identified by the base
Knonce value.

Market Clearing

Once all orders have been placed and the batch interval of Υ has elapsed,
the auctioneer will attempt to clear the market using the following algorithms:

MatchMake({Θ0, . . . ,Θn})→ Φb = {(Θb0 ,Θa0), · · · , (Θbn ,Θan)}. The MatchMake
algorithm takes as input the set of valid orders submitted during the past batch
interval and outputs a series of tuples that reflect properly matched orders.
Θa represents an order with Otype = Ask, while Θb represents an order with
Otype = Bid. Note that since we allow partial matches, a given order may
appear multiple times in the final match set. We require that a valid implemen-
tation be able to perform proper multi-attribute matching due to the existence

23

of the ∆aux portion of an order’s structure.

MarketClearingPrice(Φb)→ cprice. The MarketClearingPrice algorithm
accepts the set of orders matched by the MatchMake algorithm and returns the
market clearing price of the prior batch. The precise market clearing price al-
gorithm is left as a free parameter, with algorithms such as first-rejected-bid
or last-accepted-bid likely being used. Utilizing a single market clearing price
is intended to promote fairness and has a number of additional benefits over
pay-as-bid auctions [23].

ClearMarket(ΨA,Φb, {Ψ0, . . . ,Ψn}, cprice)→ (Ψ′
A, {Γ0, . . . ,Γn}, {Ψ′

0, . . . ,Ψ
′
n}).

The ClearMarket algorithm takes as input a prior set of matched orders within
a batch, the auctioneer’s account, the set of accounts involved in the batch,
and the market clearing price of a given batch. The algorithm outputs a set of
channel leases to be created by a batch along, a set of updated accounts, and
an updated version of the auctioneer’s account with any trading fees accrued
during market clearing.

� As shorthand, we use ∆i to refer to a cleared batch (the set of resulting
accounts after the updates have been made to produce the set of desired
channel leases).

Batch Execution

Once we’ve been able to make a market, and have the description of the re-
sulting market state (the accounts and the channel leases to be created), we can
now move on to executing the resulting batch. We use the following algorithms
to do so:

ConstructBatch(∆i) → Bti . The ConstructBatch algorithm takes a valid
market clearing, which can be seen as a delta on the auction state, and returns
a valid transaction that atomically executes the given batch on the blockchain.

ExecuteBatch(Bti)→ b =. The ExecuteBatch algorithm takes a fully valid
batch and attempts to commit it by confirming the transaction in the target
base blockchain. Once the batch has been confirmed, all operations contained
within a batch are considered executed, and can be used as inputs to additional
iterations of the auction life cycle.

5 The Shadowchain: A Bitcoin Overlay Appli-
cation Framework

In this section, we present the concept of a Shadowchain, a non-custodial ap-
plication overlay framework that we’ll use to construct a concrete instantiation
of a CLM. We note that shadowchains may also be of independent interest, as
they’re a novel way to layer more complex interactions on top of the base Bit-
coin blockchain. Shadowchains as we present them can be implemented on the
base Bitcoin blockchain today without any additional changes or enhancements.

24

However, further extensions to Bitcoin such as cross-input signature aggrega-
tion and covenants could serve to dramatically improve scalability properties of
shadowchains.

5.1 High-Level Description

First, we provide a high-level description of the shadowchain application frame-
work.

The Shadowchain Usecase. A shadowchain can be used to implement
non-custodial smart contract systems on top of the base Bitcoin blockchain.
Typically, one would opt for a shadowchain if the complexity of the state tran-
sition logic of the smart contract system could not be fully expressed using
the base Bitcoin Script. Shadowchains allow an application designer to use the
Bitcoin blockchain for censorship resistant settlement, while pushing the more
complex portions of the application (state, logic, etc.) off-chain.

Shadowchain Roles & Lifted UTXOs. A shadowchain has two primary
classes of agents: users, and the orchestrator. The orchestrator defines the
state transition function of the shadowchain, a set of non-trusted initialization
parameters, and upgrade mechanisms. A user is able to join a shadowchain
by ”lifting” their UTXOs into the higher-level shadowchain. The process of
lifting (defined further below) entails the user placing funds within a time-lock
released, multi-signature output that enforces cooperation between the user and
the shadowchain orchestrator.

Shadowchain Operation. The shadowchain orchestrator accepts trans-
action data from users and periodically proposes a new shadowchain block. A
shadowchain block takes as input the set of Lifted UTXOs that accepted the
latest block proposals, and produces a set of new UTXOs, which are the end
state after the state transition function has been evaluated. A shadowchain is
even permitted to use multiple distinct state transition functions. As user funds
cannot move without both multi-sig signatures, users are able to fully vali-
date (possibly using techniques such as zero knowledge proofs that the resulting
UTXO state was properly derived from the known state transition function.
Note that due to this structure, complex ”exit-games”, or fraud proofs are not
required as a user simply won’t sign off on a fraudulent state, and a user’s
UTXO is always manifested (in its base form) on the main blockchain.

Ephemeral Lifted UTXOs. In the scenario that the shadowchain orches-
trator disappears, or is unresponsive, users are able convert their lifted UTXO
into regular ones by spending their coins after the time-lock has expired. This
construct of an ephemeral lifted UTXO has a number of desirable properties
on the application level, as the time-locked commitment of funds can serve to
mitigate a number of application-level issues such as spam or sybil resistance.

Shadowchain Cut-Through As the evolution of a state transition func-
tion happens off-chain, it’s possible to coalesce several distinct shadowchain
blocks into a single block that combines successive invocations of the state tran-
sition function. This technique is similar to transaction cut-through [18] but is
performed in a multi-party setting. Leveraging this technique, the shadowchain
orchestrator can optimistically treat the current latest shadowchain transac-
tion in the mempool as an in-memory data structure to be updated off-chain
(via transaction replacement techniques), with the state being ”written to disk”

25

once confirmed. As a result, it’s possible to commit several shadowchain states
(possibly hundreds) in a single logical Bitcoin transaction.

Shadowchain Upgrades. Finally, similar to the base blockchain, a shad-
owchain can also be upgraded in a forward and backward compatible manner.
In other words, it’s possible for a shadowchain orchestrator to soft-fork the state
transition logic by restricting a valid state transition to enable new behavior.
Notably, the orchestrator can do this in a desynchronized manner such that
only those wishing to use the features of the new state transition function need
to adhere to the new rules. Additionally, an orchestrator can opt introduce
new backward incompatible state transition functions. Note that because of the
batching capabilities inherent in Bitcoin transactions, an orchestrator can com-
mit multiple logical shadowchain blocks (with distinct state transition functions)
in a single atomic Bitcoin transaction.

To summarize, the shadowchain application framework is a novel technique
for constructing overlay applications on the base Bitcoin blockchain in a non-
custodial manner. Shadowchains avoid the complexity of fraud proofs and exit
games by ensuring that the user has custody of their funds at all times and is
able to fully validate any proposed state transition. Shadowchains are able to
compress several logical state transitions into a single Bitcoin transaction using
a multi-party cut-through technique. An orchestrator of a shadowchain is also
able to upgrade the state transition logic on the fly, in a purely off-chain manner.

5.2 Comparison To Related Frameworks

5.3 The Shadowchain Framework

In this section, we present the abstract shadowchain application framework.
Applications are intended to use this framework, providing implementations of
specified virtual functions to fully specify and execute their application.

5.3.1 Shadowchain Orchestrator

First, we introduce the glue that keeps a shadowchain together, the orchestrator:

Definition 5.1. (Orchestrator). The Orchestrator is a non-trusted entity at
the root of a shadowchain, parametrized by its long-term public key: Ochain =
PO. The duty of an Orchestrator is to propose new blocks (the result of a
state transition) to the set of live Lifted UTXOs that make up the shadowchain.

A given Orchestrator is a non-trusted entity, and can be uniquely identified
by its long-term public key. The long-term public key PO can also be used to
uniquely identify a given shadowchain, similar to the Genesis Block hash of a
normal blockchain.

5.3.2 Lifted UTXOs

Next, we define the Lifted UTXO, which is the representation of a user’s state
within a given shadow chain:

Definition 5.2. (Lifted UTXO). A Lifted UTXO is a tuple, φU = (Asat, Texpiry, Pu, Po),
where:

26

� Asat is the size of a LO (Lifted UTXO) expressed in satoshis.

� Texpiry is the absolute expiry height of the LO, after which the owner is
able to unilaterally move the funds back to the ”base” Bitcoin blockchain.

� Pu is the public key of the end user, which is 1/2 of the public keys used
in the public key script of the output which manifests this LO on the base
blockchain.

� Po is the public key of the Orchestrator, typically derived from its base
long-term key PO. This key will be used as the other half of the multi-sig
script of the on-chain manifestation of the LO.

The construct of a Lifted UTXO is similar to the existing concept of a Fi-
delity Bond [13] with an application-specific twist. This process is akin to
creating a new ’account’ within a Shadowchain. The time-lock release nature of
the UTXO means that a user can always recover funds if the Orchestrator be-
comes unresponsive. In addition to this, a natural cost in the form of chain fees
is added, which increases the barrier for potentially malicious users to interact
with the shadow chain.

5.3.3 The Shadowchain

In this section, we present the abstract definition of a shadowchain, building
upon the definition provided above. In addition to this, we describe the typical
shadowchain lifecycle using the aid of some additional helper functions, which
are also intended to be included in the application logic of the shadowchain.

Shadowchain Components

First, we define the core components of the shadowchain.

Definition 5.3. (Shadowchain). An instantiation of a Shadowchain is defined
as a tuple: Σ = (UL, UO,∆F , Eexe, AT), where:

� UL = {φi, · · · , φn} is the set of non-expired Lifted UTXOs observed by
the orchestrator.

� U0 is the current UTXO of the orchestrator, where they may accrue ap-
plication level fees.

� ∆F = {∆f0 , · · · ,∆fn} is the set of current state transition functions.

� Eexe is the abstract execution environment of the shadowchain which all
participants will use to verify the correctness of a proposed state transition.

� AT is the abstract form of the structure of the higher-level application’s
fundamental transaction.

Shadowchain Algorithms

Given the above components, we define the operation of a shadowchain us-
ing a series of polynomial-time algorithms segmented into the following logical
categories:

27

� System Initialization: InitChain

� UTXO Management: (LiftUTXO, UnliftUTXO, ExitChain)

� Block Proposal & Validation: (ConstructBlock, ProposeBlock)

� Chain Execution: CommitBlock

� Block Cut-Through: CoalesceBlocks

� Chain Upgrade: UpgradeChain

With behavior and semantics as expressed below.

System Initialization

Before a shadowchain can be used for a given application, the system must
be initialized. This process results in the creation of the orchestrator’s long-term
public key, the execution environment, and the set of state transition functions:

InitChain(1λ) → (U0, P0,∆F , Eexe). Given the security parameter λ (ex-
pressed in unary), the InitChain method returns the initial self-lifted UTXO
of the orchestrator, the long-term public key of the orchestrator, and the set of
initial state transition functions along with the starting execution environment.

UTXO Management

Once a shadowchain has been initialized with a given set of parameters, users
can begin lifting their UTXOs, enabling participation in shadowchain blocks and
operations. The process of entering the shadowchain is referred to as UTXO
Lifting, while exiting is the reverse process:

LiftUTXO(Texpiry, {UN0 , . . . , UNn}, P0)→ φU . The LiftUTXO algorithm takes
a series of normal UTXOs (UN), the absolute expiration height of the UTXO,
and the long-term public key of the orchestrator P0, outputting a new Lifted

UTXO for the target user. The total value of the set of input UTXOs must be
greater-than-or-equal to the value of the resulting Lifted UTXO.

ExitChain(φU , Bheight)→ UN . Given a lifted UTXO with expiration height
Texpiry > Bheight, where Bheight, the ExitChain method spends an existing
lifted UTXO and resolves the user’s funds in a regular unencumbered UTXO.
Users will use this algorithm if they wish to exit the chain in cases where the
orchestrator is no longer being responsive.

UnliftUTXO(φU) → UN . Given a lifted UTXO, the UnliftUTXO method
create a new normal un-lifted UTXO that returns all funds to the user. This
is the optimistic version of the ExitChain algorithm, in that it requires coop-
eration from the orchestrator as the time-release clause of the Lifted UTXO’s
script is not yet unlocked.

Block Proposal & Validation

28

Once a shadowchain has a sufficient number of lifted UTXOs and the system
has been fully initialized, block proposal and validation can commence. This
process is similar to the process of nodes broadcasting transactions, and miners
ordering them within blocks in the base Bitcoin system:

ConstructBlock(φlive, Txn, Eexe,∆F) → BS . Given inputs of the set of
’live’ Lifted UTXOs, the set of transactions belonging to the live UTXOs, the
execution environment, and the current set of valid state transition functions,
the ConstructBlock outputs a valid shadowchain block to extend the main
chain where:

� φlive = live({φU0
, · · · , φUN } is the set of ’live’ Lifted UTXOs where the

live algorithm uses a heartbeat-like protocol to detect the current set of
active users.

� Txn is the application-specific transaction format used within the shad-
owchain.

� BS = (Txn, {φU0
, · · · , φUN },∆f , {φ′U0

, · · · , φ′UN }, UA), is the shadowchain
block itself, which is composed of the set of application transaction, in-
put Lifted UTXOs, the resulting output UTXOs after applying the set of
state transition functions, and UA any new application-specific UTXOs
produced as a result of the state transition function. Lifted UTXOs can
be consumed fully by the state transitions, therefore |{φU0

, · · · , φUN }| ≥
|{φ′U0

, · · · , φ′UN }| must be given.

Once a block has been constructed, the orchestrator of the shadowchain now
must propose said block to the set of live Lifted UTXOs before it can move
onto the next phase of shadowchain operation. As a given user may reject a
block, either implicitly due to being offline, or explicitly due to a violation of the
shadowchain consensus rules, this phase may be repeated a number of times.
The operator will use the following algorithm to propose blocks:

ProposeBlock(BS , φlive) → b. The ProposeBlock attempts to propose the
given shadowchain block to the set of live Lifted UTXOs. The algorithm returns
b = 1 if all of the participants accept the block. Once all participants have
accepted the block, we can now proceed to the execution and block commitment
phase.

Chain Execution

Once the operator has established a stable set of participants that accept
the proposed shadowchain block, it can execute the block and commit it in the
base Bitcoin blockchain:

CommitBlock(BS)→ (b, TXid). The CommitBlock takes a valid shadowchain
block, and attempts to obtain all necessary witnesses to unlock the Lifted
UTXOs to re-create them post state function application along with any new
application-specific UTXOs. The algorithm returns b = 1 if the operator was
able to succesfully obtain all necessary witnesses, and brodcasts the Bitcoin
transaction that commits the shadowchain block. Otherwise, the operator may
need to re-propose a new block to a subset of the live Lifted UTXOs.

29

Block Cut-Through

Given the structure of shadowchain blocks and state transition functions,
it’s possible for a shadowchain orchestrator to compress several distinct shad-
owchain blocks into a single instance that is equivalent to the application of
successive state transition functions on a series of distinct shadowchain blocks:

CoalesceBlocks({BS0 , · · · , BSN }) → B′
S . Given a series of consecutive

shadowchain blocks, the CoalesceBlocks algorithms compresses each consec-
utive block into a single block BSN that has an equivalent output state to
the serial application of the state transition functions on each individual shad-
owchain block.

The CoalesceBlocks algorithm is similar to the concept of transaction cut-
through [18] for UTXO-based blockchains. Using this algorithm, the operator
is able to propose a new equivalent block which produces the same set of Lifted
UTXO outputs along with any other application-specific outputs produced by
any of the intermediate blocks. This can be done post-facto, and also in an
optimistic manner in order to coalesce several unconfirmed shadowchain blocks
into a single one.

Chain Upgrade

The process of upgrading the chain in terms of the types of application-level
transactions offered, or the set of valid state transition functions used, can be
done entirely off-chain in an asynchronous manner. In order to update the en-
vironment, state transition functions, or the application-level transactions, the
orchestrator simply needs to utilize the following algorithm:

UpgradeChain(∆new, E
′
exe, T

′
xn) → ⊥. The UpgradeChain is an algorithm

that’s executed entirely in an off-chain manner allowing the operator of the
shadowchain to upgrade some or all of: the application transaction data, the
execution environment, and the set of state transition functions. Due to the
nature of the shadowchain, users of this new functionality each user must update
their local state. However, note that the Lifted UTXO remains the same, as the
operator’s long-term public key remains unchanged.

5.3.4 Shadowchain Operation

In this section, we’ll put together the above algorithms to outline the main
execution loop of the shadowchain from the perspective of the orchestrator as
well as the participants. Shadowchain operation can be viewed as a linear
deterministic state machine that uses the main Bitcoin blockchain to transition
between states.

Orchestrator State Machine

The main Orchestrator State Machine loop first attempts to process any
new UTXO lifting requests and will optimistically attempt to merge any ex-
isting unconfirmed shadowchain blocks that can be coalesced. Independent of
either of these clauses, the system will then enter into its main loop from which

30

the orchestrator will attempt to construct a new block. This loop will iterate
through the set of live transactions, propose a block to the set of live UTXOs,
filter any participants that reject the block, then attempt to commit the new
block to the blockchain.

OrchestrateChain(∆F , Eexe)

1 : repeat

2 : if haveNewLiftReqs()

3 : {φnew} ← liftNewUTXOs(PO)

4 : {φU} ← φU ∪ φnew

5 : if numUnconfBlocks() > 1

6 : B′
S ← CoalesceBlocks(unconfBlocks())

7 : (b, txid)← CommitBlock(B′
S)

8 : Txn ← liveTransactions()

9 : φlive ← liveLiftedUTxos()

10 : b← 0

11 : while b == 0&len(φlive) > 0

12 : BS ← ConstructBlock(φlive, Txn, Eexe,∆F)

13 : b← ProposeBlock(φlive, BS)

14 : if b == 0

15 : φlive ← filterRejects(φlive)

16 : if b == 1

17 : (b′, TXid)← CommitBlock(BS)

18 :

Participant State Machine

The main state machine of each shadowchain participant is essentially a
mirror of the orchestrator state machine. First, it will process any requests to
modify its existing Lifted UTXO, gather any unconfirmed transactions, then
await a new block proposal from the orchestrator.

ExtendChain(φU ,∆F , Eexe)

1 : repeat

2 : T ′
xn ← unconfTxns()

3 : submitTxns(Txn)

4 : B′
S ← await recvBlockProposal()

5 : b← ValidateBlock(B′
S)

6 : if b == 1

7 : sendWitnesses(UO)

8 : b′ ← await blockFinalize

9 : if b′ == 1

10 : localCommitBlock()

31

6 Lightning Pool: A Channel Liquidity Market-
place as a Shadow Chain

In this section, we build upon the prior sections outlining the abstract Channel
Lease Marketplace definition, as well as shadowchain operation, and construct
our Lightning Pool implementation at a low-level. We first begin by detailing
our implementation of the CLM algorithms, as well as our choice of certain free
parameters. With this concrete structure in place, we’ll then go up a layer of ab-
straction to demonstrate how Lightning Pool can be operated as a shadowchain
on Bitcoin today, without any further modifications enhancements.

6.1 Instantiating a CLM

6.1.1 System Initialization

Batch Key Parameter

Before an instance of Lightning Pool can be used by willing agents, the
system must first be initialized. This operation can be performed only by the
Orchestrator of the auctioneer. Within the system, we’ll utilize an incremented
Elliptic Curve point which we refer to as the batchID for several operations.
The batchID serves to uniquely identified a given batch, and is incremented
after each successful batch.

The batchID itself is a nothing up my sleeve (NUMS) point which has been
generated in a manner that no one, not even the auctioneer knows the discrete
log to. The raw serialized batchID (for the very first batch) within the Light-
ning Pool system can be expressed in the following syntax (displayed using
hex-encoding of a compressed key encoding of the batch key itself):

Bk0 = NUMSgen(1λ)

Let the current batchID for the nth batch be Bki . Let G be a cyclic group
of order prime order p, generated by an element G. We now define two helper
functions to allow us to ”seek” round the batchID key-space:

IncrementBatchKey(Bki)

1 : return Bki +G

DecrementBatchKey(Bki)

1 : return Bki −G

InitBatchKey

1 : return Bk0

With the system initializtion , we’ll now move onto specifying the structure
of a Marketplace Account within Lightning Pool.

Auctioneer State Initialization

32

Now that we have defined the set of initialization and manipulation methods
for our batch key parameter, we’ll move onto the initialization of the remaining
system. In order to prevent key-reuse across the entire system, we employ a
similar key-derivation scheme to that of the Lightning Network’s current com-
mitment transaction format [21]. This key derivation will be used within all
account scripts within the system, as well as the auctioneer’s main account.

First, we define a helper function for deriving the auctioneer’s current key
Apki from the static auctioneer account keyApk parameterized by the current
batchID. As noted above, the batchID serves as both a public key within the
system as well as a counter. The batchID may be expressed as a normal com-
pressed public key, or as an integer Nb which denotes the scalar multiple off-set
from the starting batch key Bk0 : [Bk0]Nb. We define the auctioneerScript as
follows:

auctioneerScript(Apk, Bki)

1 : Apki ← Apk +G ·H(Apk‖Bki)

2 : return OP CHECKSIG Apki

The script itself is a simple script that simply verifies a proper auctioneer
signature given a particular batchID. In order to make all scripts uniform (as the
account scripts are P2WSH outputs, we wrap this script in a P2WSH layer of indi-
rection as well. With this algorithm defined, we can now define the SystemInit

implementation for Lightning Pool that derives the first batch key along with
the starting script of the auctioneer.

SystemInit(1λ,Υmin)

1 : batchKey ← InitBatchKey()

2 : Ask ←$Z2λ

3 : Apk ← GAsk

4 : aScript← auctioneerScript(Apk, batchKey)

5 : pkScript← p2wsh(aScript)

6 : return (Ask, Apk, utxo(pkScript, seedSats))

Once the third return value, auctioneer’s master account has been confirmed.
Participants are able to open accounts, submit orders, and finally participate in
auction batches.

6.1.2 Lightning Pool Accounts

Next, we move onto the Marketplace Account structure for agents within the
Lightning Pool marketplace itself. Similar to the auctioneer’s master account,
we apply a key derivation scheme that combines the auctioneer’s key, the batch
key, a key supplied by the trader, and a distinct trader specific secret to ensure,
that:

� A P2WSH output script is never re-used.

� Traders rotate keys with each batch.

33

� The set of trader keys using within a batch itself is indistinguishable w.r.t
the input keys referenced and newly created outputs keys.

Let Pt be a trader’s base key, St←$Z2λ be an account-specific secret gener-
ated by the trader, and PA be the auctioneer’s long-term public key.We define a
new algorithm traderAccountScript which will be used to derive the pkScript
for a given trader:

traderAcctScript(Pt, St, PA, Bki)

1 : t← H(Bki‖St‖Pt)

2 : P ′
t ← Pt + (t ·G)

3 : P ′
A ← PA +H(P ′

t‖PA) ·G
4 : witnessScript← {
5 : P ′

t OP CHECKSIGVERIFY

6 : P ′
A OP CHECKSIG

7 : OP IFDUP

8 : OP NOTIF

9 : Tblocks OP CHECKLOCKTIMEVERIFY

10 : OP ENDIF

11 : }
12 : return witnessScript

The above script can either be spent via the time out clause using the follow-
ing witness stack, using nil value passes an empty signature to force execution
of the timeout clause.

nil traderSig witnessScript

Or via the normal spend path way which will be used to authorized batches,
account closing, and any other account modifications:

auctioneerSig traderSig witnessScript

Note that each trader starts using the current batch key at the time they
joined the marketplace. However, as we’ll see below in the execution section, a
trader’s key gets rotated with each batch they participate in, meaning that the
set of batch keys used within a trader’s account output script will eventually
become de-synchronized across the market unless all trader’s participate in all
batches, which is unlikely.

Given the traderAccountScript algorithm, we’ll now define our implemen-
tation of the set of Account Operations methods:

34

NewAccount(1λ, Pauctionp)

1 : kt ←$Z2λ

2 : Pt ← kt ·G
3 : acctScript← traderAcctScript(Pt, St, PA, Bki)

4 : accountTxn← makeTxn(acctScript)

5 : traderSignTxn(accountTxn)

6 : broadcastTxn(accountTxn)

7 : Ψ← await confirmation(accountTxn)

8 : return Ψ

ModifyAccount(Ψ, Pauctionp)

1 : if inPendingBatch(Ψ)

2 : return (0,Ψ)

3 :

4 : Bki+1 ← IncrementBatchKey(Ψ, Bki)

5 : acctScript← traderAcctScript(Pt, St, PA, Bki+1)

6 :

7 : txInputs← readInput clientStream

8 : txOutputs← readInput clientStream

9 : action = ⊥
10 : match :

11 : acctScript not in txOutputs :

12 : action = CLOSE

13 : txOutputs.acctOutput.V alue > Ψ.V alue :

14 : action = DEPOSIT

15 : txOutputs.acctOutput.V alue < Ψ.V alue :

16 : action = WITHDRAW

17 :

18 : accountTxn← makeTxn(acctScript, action, txInputs, txOutputs)

19 : traderSignTxn(accounTxn)

20 : broadcastTxn(accounTxn)

21 :

22 : Ψ′ ← await confirmation(accounTxn)

23 : return Ψ′

Notice how the batchKey is incremented for all account modification oper-
ations. In this manner, the batchKey also serves as a sequence number within
the scripts to ensure that no scripts are re-used within the system.

Users are able to recover their accounts themselves if data has been lost by
scanning the chain for the above instances of newAcctScript and utilizing the
timeout clause within the account script of a trader’s account.

35

6.1.3 Channel Leases in the Lightning Network

Now that we have our concrete account structure, we’ll move on to presenting a
concrete instantiation of a Channel Lease based on today’s widely used payment
channel implementation within Lightning Network.

Channel Lease Duration Enforcement

The unique component that sets apart a regular channel from one that was
created via a channel lease contract is duration enforcement. As a channel lease
contracts states the capital must be committed to the network for a minimum
period of time, in order to implement this in a trust-minimized manner, we
must enhance the existing channel format [21] used in the Lightning Network
today. Our tool of choice for creating minimum duration enforced channels is
the OP CHECKLOCKTIMEVERIFY [29] op-code. Our construction is similar to the
one proposed in [30] Minimally, we need to enforce the following conditions:

� The Liquidity Maker involved in a channel lease cannot sweep the funds
in their settled commitment output as manifested on their commitment
or the commitment of the remote party until Dblock Bitcoin blocks has
passed since the creation of the channel lease.

� The Liquidity Maker also cannot fully sweep any funds that are sus-
pended within HTLC outputs until Dblock Bitcoin blocks has passed.

The second item is of great importance to ensure that the seller of a channel
lease can’t just move all the committed funds into HTLCs, then close the chan-
nel and be fully refunded, netting the lease premium in the process. Instead, we
need to ensure that the node is able to resolve any HTLCs on-chain if needed,
while still being forced to commit the funds in ancestors of the multi-sig funding
output, until the lease duration has expired.

We now make a small modification first to the settled local output of the
Liquidity Maker:

OP_IF

<revoke key>

OP_ELSE

<lease duration in blocks>

OP_CHECKLOCKTIMEVERIFY

OP_DROP

<delay in blocks>

OP_CHECKSEQUENCEVERIFY

OP_DROP

<delay key>

OP_ENDIF

OP_CHECKSIG

36

Next, we make a similar modification to the settled remote output of the
Liquidity Maker, assuming anchor output based channels [4] are used:

<localKey> OP_CHECKSIGVERIFY

<lease duration> OP_CHECKLOCKTIMEVERIFY

1 OP_CHECKSEQUENCEVERIFY

Finally, we modify the offered HTLC outputs of the Liquidity Maker for
their local commitment transaction:

OP_IF

<revoke key>

OP_ELSE

<lease duration in blocks>

OP_CHECKLOCKTIMEVERIFY

OP_DROP

<delay in blocks>

OP_CHECKSEQUENCEVERIFY

OP_DROP

<delay key>

OP_ENDIF

OP_CHECKSIG

A less trust-minimized version of channel lease duration enforcement is possi-
ble simply by having the Liquidity Taker refuse a cooperative channel closure
until the lease duration has expired. With this non-script based enforcement,
the only direct option the Liquidity Maker has is to force-close their channel.
However, the operator of an auction venue can request additional information
along-side orders before batch execution (as detailed below) to identify prema-
ture force closes on-chain in order to penalize the renegading party.

Channel Lease Funding Protocol

Given the existence of a new modified channel CL that supports the channel
lease protocol, we require a new way to fund the channels as a channel lease
itself will partially-bind the following parameters of a given channel:

� The size of the channel itself.

� The two multi-sig scripts used within the channel.

� The duration of the channel lease itself.

Rather than modifying the base funding protocol of the Lightning Network,
we’ve opted to instead provide a new ”side-loadable” partial funding binding
API we call a channel shim [26]. A channel shim allows a party A to expect cer-
tain parameters of the channel itself. Given the pendingChanID which is used to
identify an unfinalized channel within the Lightinng Network [19], an algorithm

37

RegisterChannelShim(Γ, Pa, outPoint) instructs a Lightning Node to use a
prearranged public key as specified within channel lease Γ for its portion of the
multi-sig output used within the ultimate channel.

The existence of the channel shim API allows a node to proceed in the set
up of a channel for which it may not yet know the full funding transaction
to. Given the lease, and the expected outpoint, both sides can fully sign the
commitment transaction in a manner that doesn’t incur any risk as due to the
account structure, they’ll need to sign off on the batch funding transaction itself
before it can be broadcast.

The funding flow using this new order shim, assuming that match making
and market clearing has already occurred, resembles the following flow, with
Alice being the Liquidity Taker and Bob being the Liquidity Maker:

leaseInit

(Γ, leasePoint)← Bti .lease[Alice ‖Bob]
Pa ← Γ.PT

Pb ← Γ.PM

RegisterChannelShim(Γ, Pa, leasePoint)

ChannelShimFundChannel

Alice Bob

leaseInit()

OpenChannel(Pb)

AcceptChannel(Pa)

FundingCreated(leasePoint)

FundingSigned

In this modified flow, notice that the taker returns the pre-generated public
key to use within the multi-sig within the AcceptChannel method, and the
taker uses the canned leasePoint as the input to the funding transaction. As
we’ll see below the leasePoint itself is generated after market clearing, and
during the construction of the batch execution transaction. The leasePoint as
it exists on the batch execution transaction creates a new channel point that
satisfies the details of the negotiated channel lease Γ: the amount of the lease,
and the pkScript of the two multi-sig keys Pa and Pb.

We note that the channel shim abstraction has a number of independent uses
including strong layer isolation for more elaborate multi-party channel protocols.
Notice how the base BOLT funding flow is unmodified, meaning that a higher
level application can handle the specified details of the multi-party transaction
protocol, while the unmodified Lightning node software manages the underlying
channel itself.

38

6.1.4 Order Structure

With our concrete account structure and channel lease semantics in place, we’ll
now outline the precise structure of orders as implemented in Lightning Pool.
As a CLM is a sealed-bid auction, the set of active orders within an auction
epoch isn’t known to a given participant within the auction. Instead, bids are
submitted directly to the auctioneer, and may optionally be cancelled between
batch epochs as well. Using the fundamental unit notion for expressing the
quantity of an order, we permit partial matching in addition to specifying a
minumum matchable amount by adding a new field Mmatch to an order within
the ∆aux set of additional order attributes.

Order Tag Generation & Validation

Next, we specifying order tag generation and validation. Before verifying an
order, the order Θ itself is serialized in order to generate the message digest of
the order. This is done by concatenating each item of the order into a single
byte stream, with the set of ∆aux attributes specifying a custom serialization
mechanism.

For our tag generation, we opt to utilize an SUF-CMA signature scheme.
As we target the base Bitcoin blockchain, Lightning Pool utilizes Schnorr sig-
natures implemented over the secp256k1 elliptic curve. In addition to having
the trader that submits an order sign the order message digest, we also require
that all the backing Lightning nodes of the order also include a signature as
well. As the number of backing nodes for a given account may be numerous,
rather than accepting individual signatures for each node, we instead require the
account operator and all backing nodes to present a single Schnorr signature.
As we also want have our order tagging scheme be secure against key rogue-key
attacks, we select the MuSig2 multi-signature scheme [10].

Given the MuSig2 multi-signature scheme, we define the following algorithms
used in our order tagging scheme:

� Let Sign({P0, . . . , Pi},M) → σ, be an algorithm that returns a valid
MuSig2 multi-signature signed by the set of public keys on message M .

� Let Verify({P0, . . . , Pi}, σ,M) → b be an algorithm that returns b = 1
if the passed signature is a valid MuSig2 multi-signature signed by the set
of public keys for the message M .

Given these algorithms, we now define our order tag generation and valida-
tion implementations:

GenOrderTag(Pacct, Θ)

m← Knonce‖Vver‖Pacct‖∆base‖∆aux

tag ← Sign({Θ.Lpub,Θ.Mpub . . . },m)

return tag

VerifyOrderTag(Pacct, Θ)

m← Knonce‖Vver‖Pacct‖∆base‖∆aux

b← Verify({Pacct, PMpub0 , . . . , PMpubi},m)

return b

39

We omit the implementations of SubmitOrder and CancelOrder as the de-
pend on the specific environment in which the auctioneer is implemented in.
We only add that the pre-image to an order nonce K ′

nonce is known only to the
agent that places the order. As we touch on within the future direction section,
this commitment structure also has a number of independent uses outside of
order cancellation.

6.1.5 Node Rating Agencies

Recalling the set of initial requirements that were set our in section 4, it’s criti-
cal that Lightning Pool reduces information symmetry for the buyer by allowing
them to gauge the quality of the node selling a channel lease before they enter
into an agreement. In order to achieve this, we introduce the concept of a Node
Rating Agency. An rating’s agency will allow the buyer of a lease to either query
the agency in an ad-hoc manner, or specify that they only wish to be matched
with nodes that reside on a certain tier.

Let ˆTnode = {t̂0, . . . , t̂n} be the set of possible ratings that can be given to
a Lightning Node with t̂0 containing all known Lightning Nodes, and |t̂i| >
| ˆti+1| ∀ i < n, where n is the number of available tiers. In other words, we
create a series of node sets, with the higher node tiers having less nodes than
lower tiers. This creates a natural system of concentric circles where as the
tier index increases, the set of nodes shrinks, and eventually only higher quality
nodes remain.

Building off this notion of tiered node sets, we define the following algorithm
for our node rating agency:

NodeTier(Lpub)

nodeMap←map(ˆTnode)

tnode = nodeMap[Lpub]

return tnode

Given this algorithm, we now specify our of the additional auxiliary order
attribute ∆aux as:

(Ntier, . . .) = ∆aux

During match making, we then require the constraint that a given bid order
Θbid will only be matched with an ask order Θask if the following constraint is
met:

Θbid.Ntier >= NodeTier(Θask.Lpub)

6.1.6 Uniform Price Market Clearing & Matching

With our order structure, and the notion of the Node Rating Agency outlined,
we now move on to the concrete market clearing and match making within
Lightning Pool.

Order Matching

40

As mentioned, due to the set of additional constraints outside of simply the
posted price and available supply, we employ a multi-attribute mach making
algorithm. Specifically we opt to utilize a greedy algorithm for the purpose of
match making, rather than attempt to find an optimal solution using techniques
such as mixed integer linear programming. In this section, we focus primarily
on the set of base attributes, leaving the consideration of a trader’s axillary
attribute preferences to later work.

First, we define an abstract algorithm which will be used to determine if a
given ask order Θask is compatible preference-wise to a given bid order Θbid:

� MatchPossible(Θbid,Θask) → (b, nunit). This algorithm returns b = 1 if
the given ask and bid are compatible from a match making perspective. If
the orders are compatible, then nunit represents the number of units that
can be matched across the two orders.

Given this function we define our implementation of the MatchMake algo-
rithm:

MatchMake(O: {Θ0, . . . ,Θn})
1 : matchSet← {}
2 : asks← sort(filter(O,Θi.Otype == Ask))

3 : bids← sort(filter(O,Θi.Otype == Bid))

4 : for bid in bids :

5 : for ask in asks :

6 : if MatchPossible(bid, ask) :

7 : matchSet = matchSet ∪ (ask, bid)

8 : return matchSet

We note that several optimizations here are possible to reduce the worst-case
running time of the algorithm which we leave open for future work. We also
assume that the set of valid orders has been filtered out before being passed into
this algorithm based on the current target batch fee rate and the posted max
batch fee rate of each order.

Uniform Price Clearing

Once we’ve had our set of candidate matches, we’ll now move on to the mar-
ket clearing phase. During the market clearing phase, two distinct operations
are carried out:

� A trader’s account state is updated to reflect any lease premiums earned
due to matches, chain fees paid in the batch execution transaction, fees
paid to the auctioneer, and finally the debit for any sold channels from
their account.

� We determine the uniform clearing price for a given potential batch.

These two actions comprise the ClearMarket and MarketClearingPrice

algorithms. For our market clearing price, we select the Last Accepted Bid
market clearing rule, choosing to go with a buyer’s bid marking price. Given
this price clearing algorithm, we now define our implementation of the market
clearing algorithms:

41

MarketClearingPrice(Φb)

1 : lastPair← Φb[len(Φb − 1)]

2 : return lastPair.bid.αrate

ClearMarket(ΨA,Φb, {Ψ0, . . . ,Ψn}, cprice)
1 : leases← {}
2 : accts← {}
3 : for orderPair in Φb :

4 : lease← newLease(orderPair)

5 : orderPair.taker.balance −= lease.premium

6 : orderPair.maker.balance += lease.premium

7 :

8 : orderPair.taker.balance −= exeFee(lease.amt)

9 : orderPair.maker.balance −= exeFee(lease.amt)

10 : ΨA.balance += 2 · exeFee(lease.amt)
11 :

12 : leases← leases ∪ lease

13 : accts[orderPair.taker]← orderPair.taker

14 : accts[orderPair.maker]← orderPair.maker

15 :

16 : return (ΨA, leases, accts)

Notice that we omit the observance of chain fees, as that will be applied to
each input/output during the later batch construction phase.

6.1.7 Auction Batch Execution

Once we’ve cleared the market, we’ll now move onto the batch execution phase.
During this phase, we’ll construct the batch transaction which executes a given
batch, and also gather all the necessary witnesses for each participant of the
batch so we can properly spend their on-chain account outputs. Remember
that due to the non-custodial structure, a trader will fully validate a given
batch before they sign off on it.

Batch Transaction Construction

A given batch transaction contains the following inputs: the set of trader ac-
count inputs involved in the batch, and the input of the master auctioneer itself.
In addition to these inputs which can only be spent each each user authorized
the proposed batch, we also add the following outputs: a trader’s new incre-
mented account output which reflects the market clearing, the set of channels
created as part of the channel lease, and the incremented auctioneer account.
Note that the format of the batch transaction itself may change multiple times
during this phase if participants reject the batch, or if fee changes causing the
auctioneer to consider a subset of the prior set of orders.

Taking this into consideration, we define our implementation of Construct-
Batch as follows:

42

ConstructBatch(∆i)

1 : tx← newTx()

2 : tx.addIn(∆i.ΨA)

3 :

4 : for acct in ∆i.Ψ :

5 : tx.addIn(acct.prevOut)

6 : for acct in ∆i.Ψ
′ :

7 : acct.Value −= feeShare(∆i, acct)

8 : tx.addOut(acct.txOut)

9 :

10 : for lease in ∆i.Γ :

11 : tx.addOut(lease.txOut)

12 :

13 : ΨA.value −= feeShare(∆i,ΨA)

14 : tx.addOut(∆i.Ψ
′
A)

15 : return tx

Batch Transaction Execution

Once the batch has been constructed, the auctioneer then needs to propose
the batch to each trader, and collect the necessary set of signatures required
to spend each trader’s account input. During this execution phase, we assume
that this is the final set of traders that wish to be a part of this batch. Once
the auctioneer has all the necessary signatures to broadcast a batch, the batch
execution transaction can be broadcast, ending this auction epoch.

Batch transaction execution itself is a multi-party protocol wherein the auc-
tioneer presents a valid auction batch to all involved parties, the parties verify
the batch, before finally signing off by resenting valid signatures of the batch
(thereby attesting to it) which are require to execute the batch by committing
it in the Bitcoin blockchain.

We define batch execution in the context of Lightning Pool as follows:

43

ExecuteBatch(Bti)

Trader Auctioneer

BatchPrepare(Bti)

b← ValidateBatch(Bti)

if b == 1 :

leaseInit(Bti)

BatchAccept

else :

BatchReject

abort if reject sent

BatchSignBegin

ChannelShimFundChannel(Γ)

Wi ← sign(Γ, Bti)

BatchSign(Wi)

BatchFinalize

broadcast(Bti)

Once the auctioneer has gathered all the signatures Wi from each partici-
pant of the batch, then it can sign its own input in the batch transaction, and
broadcast the batch thereby finalizing execution. We now provide additional
insight with respect to the meaning of each of the messages sent above.

� The BatchPrepare message kicks off batch execution and is used to pro-
pose a new potential auction batch to an end user client. Upon receipt
of this message, the client will attempt to verify the batch using the
ValidateBatch algorithm.

� If the batch is invalid from the client’s PoV, then a BatchReject message
is sent. Upon receipt of the reject message the auctioneer will resume the
protocol, excluding the rejecting client.

� Otherwise, the client accepts the batch after verifying its integrity by
sending the BatchAccept message.

� In order to synchronize the creation of funding shims and the channel
funding protocol itself, the auctioneer send the BatchSignBegin message.
After sending the reject, the taker will register a funding shim to ensure
it’s able to properly handle the incoming funding request in the next phase.

� Upon receipt of the BatchSignBegin message, the client then is ready to
fund the channel, using the leasePoint which is present on the batch
execution transaction Bti .

44

� Once the funding is complete (both sides have a valid commitment trans-
action), then the trader will sign its input to present a valid signature to
the auctioneer, so the batch transaction can be completed.

� The final set for the auctioneer is to commit the new batch to disk, and
broadcast the transaction to the Bitcoin network.

6.1.8 Sidecar Channel Market Clearing & Batch Execution

As mentioned in the background section, a Channel Lease Marketplace is able
to also implement the abstract notion of a ”sidecar channel”. We begin by first
defining a sidecar channel as so:

Definition 6.1. (Sidecar Channel. A Sidecar Channel is defined as Σc =
{Ar, Bs, Cg, Nsatin , Nsatout}, where:

� Ar is the receiver of a new channel which may contain both inbound and
outbound liquidity. This party may or may not already be a participant
in the CLM.

� Bs is the seller of a normal channel lease within the CLM, and holds an
active trading account.

� Cg is the gifter of a sidecar channel who wishes to onboard Ar to the
Lightning Network. Note that Ar may not even have any Bitcoin at all.

� Nsatin is the number of Bitcoin expressed in satoshis of the channel itself,
which will be available as inbound channel bandwidth to Ar.

� Nsatout is the number of Bitcoin which is to be pushed [19] (push amt)
to the receiver of the side car channel, allowing them to both send and
receive.

At a high level, a sidecar channel allows Alice to buy a channel for Carol via
Bob. Pool implements sidecar channels by making a series of small modifications
to the normal marketplace operations. An end-to-end workflow resembles the
following:

� Alice who already has an account in the CLM places an order to buy a
channel. However, rather than specifying the public key and connection
details of her own node, she uses Carol’s information instead.

� During market clearing, if Nsatout > 0, then Alice will pay an additional
amount of Nsatout satoshis directly into the account of Bob.

� During batch execution, rather than Alice registering a channel shim, she
informs Carol to do so in an expectation step. Bob then uses the new
Nsatout satoshis in his account to push the Bitcoin over to the channel he
created between himself an Alice.

� To ensure the agreement is upheld, Carol uses a channel acceptor [27]
predicate to validate that the proper amount has been pushed.

45

Aside from the above modifications to our market clearing and batch ex-
ecution, everything else remains untouched. The end result is the ability to
purchase a channel for a 3rd party in the network in a trust-minimized manner.
This new ability is akin to being able to insert an edge in the network (a new
channel) between any two arbitrary but cooperating parties. As an example, an
exchange could use this flow to allow a client to withdraw directly into a new
channel.

6.1.9 LSAT as Pool Tickets

As an added layer against spam and resource exhaustion attacks, Lightning Pool
uses Lightning Service Authentication Tokens, or LSATs [7] when interacting
with all users. In order to perform operations such as creating an account,
querying batch snapshots, etc, a valid LSAT is required. The auctioneer is
able to dynamically raise the price of an LSAT which is expressed in satoshis if
anomalous behavior is detected.

In addition to using LSATs to throttle or rate limit clients, the auctioneer is
also able to use them as a mechanism to offer up historical chain data for sale
to 3rd party observers (those without active trading accounts) of the system.

6.2 The Lightning Pool Shadowchain

In this section, we complete the Lightning Pool system by demonstrating out
its implementation of a Channel Lease Marketplace can be implemented using
our shadowchain application overlay framework.

6.2.1 Lightning Pool Accounts as Lifted UTXOs

First, we link the concept of our non-custodial accounts in the CLM realm to a
lifted UTXO. The process of lifting and unlifting a UTXO is simply a series of
operations required to create, modify or close an account:

LiftUTXO(Texpiry, {UN0
, . . . , UNn}, P0)

1 : inputs← {UN0 , . . . , UNn}
2 : return NewAccount(Texpiry, P0, inputs)

UnliftUTXO(ΨU)

1 : (b,)← ModifyAccount(ΨU , Pauctionp)

2 : return b

ExitChain(φU , Bheight)

1 : if φU .Tblocks < Bheight :

2 : return 0

3 : (b,)← ModifyAccount(ΨU , Pauctionp)

4 : return b

Note that it’s also possible to upgrade Lifted UTXOs as implemented within
Pool, as a given user is able to use the latest features in Bitcoin script to
achieve the same functionality. However, due to privacy implications, it may

46

be preferred to have all account scripts, and further all scripts within a batch
execution transaction be uniform.

6.2.2 Auction Batch Proposal

Next, we move unto patch proposal and acceptance. An auction batch within a
CLM maps 1:1 to the concept of blocks in the shadowchain domain. Given this
insight, we now define the ConstructBlock and ProposeBlock algorithms:

ConstructBlock(φlive, Txn, Eexe,∆F)

Φb ← MatchMake(Txn)

cprice ← MarketClearingPrice(Φb)

ClearMarket← ∆F

∆i ← ClearMarket(ΨA,Φb,Ψ, cprice)

return ∆i

ProposeBlock(BS , φlive)

b← ValidateBatch(BS , φlive)

return b

The process of constructing a new block walks through each of the phases
within the auction itself. Note that a block in our system can only be constructed
if there exist a valid market clearing given the set of orders (application-specific
transactions). The auctioneer then proposes the block to each party within the
BatchPrepare message. Traders are then free to accept or reject a given block.

6.2.3 Shadowchain Batch Execution

Now that we’re able to lift/unlift UTXOs and propose blocks within our Shad-
owchain, we now define the series of methods that will be utilized to allow clients
to execute the their local version of the state transition function to accept new
proposed batches:

CommitBlock(BS)

1 : (b, TXid)← ExecuteBatch(BS)

2 : return b

The ExecuteBatch algorithm does most of the heavy lifting here. Note that
if for whatever reason, execution fails, then b = 0 is returned, and we resume our
normal state machine execution loop. At the end of the CommitBlock algorithm
all participants have the latest block (as they need to be given the block in order
to sign off on it), and the block is broadcast to the Bitcoin blockchain. After this
phase, it’s possible to continue committing new blocks without waiting for prior
blocks to confirm. Due to this flexibility, the Orchestrator of the Lightning Pool
shadow chain is then able to optimistically perform transaction cut-through to
combine several logical blocks into a single Bitcoin transaction.

6.2.4 Unconfirmed Batch Cut-Through

Recall that a shadowchain block can also be optimistically aggregated into a
single block. In the domain of the Lightning Pool shadowchain, combining
blocks requires ensuring that all produced channel leases will still exist in the
final combined blocks, and the end state of each account remelts any consecutive
market clearing opportunities:

47

CoalesceBlocks(F: {BS0
, · · · , BSN })

1 : inputs← set(F)

2 : leases← extractLeases(F)

3 : accts← endAcctState(F)

4 :

5 : tx← ConstructBatch(∆i(inputs, leases, accts))

6 : b← ExecuteBatch(t)

7 : return b

For brevity, we omit the referenced internal algorithms, however the naming
is intended to be intuitive. Given a series of blocks F , we need to extract all
the inputs referenced in each block (the series of accounts), extract the set of all
leases created within the block, and also the ending account state of all accounts
involved in the prior blocks. Note that one account may participate in all or
some of the prior blocks. The process of block cut-through allows us to only
manifest the ending state of their account and elide the intermediate states from
the PoV of the blockchain. With these summaries constructed, the auctioneer
then construct a new batch, and executes it using the normal algorithms.

Scalability gains are had by only manifesting the final state of each account,
as well as removing the need to manifest all intermediate transaction within the
blockchain. All participants have an incentive to participate in this optimistic
block cut-through as they’ll also end up paying less chain fees as they only need
to pay for their account input+output, and any leases created once. If any
of the intermediate blocks confirm instead of the cut-through block, then the
process can be repeated with the new set of unconfirmed blocks.

6.2.5 Auction Upgrades

Finally, we define the process by which we upgrade the CLM shadowchain itself.
As this is an off-chain process, each participant of the shadowchain is able
to execute the UpgradeChain algorithm simply by updating their end client
software. In addition to this we utilize two upgrade extension points:

� The version of a given order.

� The batchVersion sent within the BatchPrepare message.

The version in each order allows us to add new order types over time which
implement new match making related preference expression, or brand new chan-
nel types. The version sent along during batch execution allows us to modify
attributes such as the fee sharing scheme, or the structure of the batch execution
transaction itself.

7 Security Analysis

Similar to Lightning Loop, the Lightning Pool backend server is may be closed
source, but clients are able to fully verify and audit each phase of the auction.
At a high level, Pool can be seen as a “shadow chain” anchored in the base
Bitcoin blockchain. The shadow chain validates modifications to a subset of the

48

UTXO set (the Pool accounts) with the auctioneer acting as a block proposer
to extend the chain. State transitions are validated and accepted by those that
are involved in a new block (the auction batch). Newer clients are even able to
audit the prior history of the system in order to ensure proper operation. Pool
uses the Bitcoin blockchain for what it’s best for: global censorship resistant
batch execution.

Leveraging this shadow chain structure, users remain in control of their funds
at all times, and will only enter into agreements that they’re able to fully verify,
ensuring that channels are properly constructed and that the market is operating
as expected. Compared to existing centralized exchanges with off-chain order
execution, Pool has a number of attractive security properties:

� As a non-custodial system, users are in control of their funds at all times.

� A purchased LCL will result in the creation of a channel with parameters
that capture the preferences expressed in the initial order.

� If the auctioneer server is hacked, the breach doesn’t unilaterally compro-
mise user funds.

� Orders by one trader cannot be used to spoof orders by another trader.

� Clients are able to verify and audit all operations carried out by the server
during batch construction including proper order matching.

8 Future Directions

As is clients verify each Shadowchain blocks within the CLM system, but they
have no assurance that their order was actually included in the mach making
function. In this manner, the auctioneer can silently ignore a set of orders. To
remedy this, it may be possible for the auctioneer to publish an order trans-
parency authenticated data structure to give users a merkle leaf receipt of proper
order inclusion. Agents in the marketplace would then exchange their subjective
order tree roots to confirm all orders have been included before they enter the
batch execution phase.

Rather than sending over a full block, the auctioneer can instead send over
a zero-knowledge argument of proper block validity. This would improve the
privacy of the system, as less information about the underlying order book is
leaked to participants. The proof would be rooted at the order merkle tree root
in order to give traders more assurance that their orders were included.

As is, the maker re receives their premium all at once. However it may be
possible to set up another uni-directional channel in order to stream the interest
in real-time. We call this concept of a uni-directional channel used to stream the
owed interest with each new block a coupon channel. It may further be possible
to allow others to buy/sell the future cash flows of the ”coupon channels”.

9 Related Work

The Celar Network [33] puts forth a concept of A Liqudity Backing Auction.
Their auction differs from ours in that they opt to utilize a Vickery-Clarke-
Groves auction, and unlike our double-call auction, the auction described in the

49

system takes place with a designated on-chain Ethereum contract with a single
seller. Rather than paying out interest in the currency of the base blockchain,
the Celar network opts to instead issue a new sub-currency which is used to
rewards liquidity providers, which actually an IOU, thus being subject to default
risk. In addition, all order submission and auction clearing takes place on-chain
rather than off-chain as implemented with Lightning Pool.

The Gnosis Prediction [34] market uses an on-chain batched auction to pro-
vide liquidity for multiple distinct assets. Compared to our work, all operations
happen on-chain rather than off-chain, and they opt to use mixed-integer linear
programming to derive an optional solution for their market clearing target.

Independent Bitcoin developer ZmnSCPxj’s concept of Smart Contracts Un-
chained [31] is similar to our Shadowchain overlay application framework. How-
ever, their system is based on a concept of escrows which involved a 3rd party,
whereas our concept of Lifted UTXOs only concerns the user and the Shad-
owchain orchestrator. In addition to this, they implement their system with a
single output that’s used by all participants. Shadowchains on the other hand
give each participant an individual UTXO, which allows for a more flexible par-
ticipant set in proposed batches. Finally, their system may allow for funds to
be stolen with the collusion of one of the participants, and the smart contract
platform service. Lifted UTXOs within the context of shadowchains are fully
non-custodial.

Lisa Neigut, and Casey Rodamor put forth an idea to extend the Lightning
p2p network to support liquidity advertisements for peers seeking to solicit new
dual funded channels [28]. Compared to our work, their proposal is an adhoc
p2p bulletin board without a true venue for market discovery. We also target
single funded channels as we note that it’s possible to simulate dual funded
channels within our auction using a pair of bid and ask orders matched between
the same parties.

Bitrefill’s Thor [25] service is similar to our work, however there exist only
a single seller (Bitrefill) which names a price (no preference incorporation) and
doesn’t guarantee a lifetime of the channel.

10 Conclusion

In this work, we’ve put forth a new abstraction over capital obligations in the
Lightning Network, which we call channel leases. Channel leases can be bought
and sold on a Channel Liquidity Marketplace directly solving a series of bootrap-
ping challenges the network faces, commonly referred to as: the inbound liquid-
ity problem. To implement a Channel Lease Marketplace in a secure manner,
we put forth the concept of the Shadowchain application framework which is
of independent use. We then concretely construct Lightning Pool, the first CLM
implemented on top of the base Bitcoin blockchain. Lightning Pool allows those
with idle capital to earn yield on their Bitcoin, and also allows those that need
inbound to receive over the network to obtain a reliable source of incoming pay-
ment bandwidth. The exigence of systems such as Lightning Pool creates new
revenue sources for routing nodes on the network, and also creates a new form
of yield bearing instrument for the greater Bitcoin ecosystem.

50

References

[1] Joseph Poon & Tadge Dryja, The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments, DRAFT Version 0.5.9.2, https://lightning.

network/lightning-network-paper.pdf, 2016

[2] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry,
Arthur Gervais, SoK: Layer-Two Blockchain Protocols, https://eprint.

iacr.org/2019/360.pdf, 2019

[3] Department of the Treasury, Uniform-Price Auctions Update of the
Treasury Experience, https://www.treasury.gov/press-center/

press-releases/Documents/upas.pdf, Oct 1998

[4] Lightning Network Developers, Anchor outputs, https://github.com/

lightningnetwork/lightning-rfc/pull/688, Oct 28, 2019

[5] Simina Brânzei, Erel Segal-Halevi, Aviv Zohar, How to Charge Lightning,
https://arxiv.org/abs/1712.10222, Dec 27, 2017

[6] Paul Milgrom & Robert J. Weber, The Value of Information in a Sealed-
Bid Auction, http://web.stanford.edu/~milgrom/publishedarticles/

ValueOfInformation.pdf, 1982

[7] Olaoluwa Osuntokun, LSAT: Authentication and Payments for the
Lightning-Native Web, https://lightning.engineering/posts/

2020-03-30-lsat/, March 30, 2020

[8] Olaoluwa Osuntokun & Conner Fromknecht, AMP: Atomic Multi-Path Pay-
ments over Lightning, https://lists.linuxfoundation.org/pipermail/
lightning-dev/2018-February/000993.html, Feb 6, 2018

[9] Thomas Ristenpart and Scott Yilek, The Power of Proofs-of-Possession:
Securing Multiparty Signatures against Rogue-Key Attacks https://www.

iacr.org/archive/eurocrypt2007/45150228/45150228.pdf,

[10] Jonas Nick,Tim Ruffing, and Yannick Seur MuSig2: Simple Two-Round
Schnorr Multi-Signatures, https://eprint.iacr.org/2020/1261.pdf Oc-
tober 11, 2020

[11] SIMON PARSONS, JUAN A. RODRIGUEZ-AGUILAR, MARK
KLEIN, Auctions and bidding: A guide for computer scien-
tists, http://www.sci.brooklyn.cuny.edu/~parsons/courses/

7412-fall-2011/papers/bluffers-final.pdf, 2020

[12] Meni Rosenfeld, Analysis of Bitcoin Pooled Mining Reward Systems,
https://arxiv.org/abs/1112.4980, Dec 21, 2011

[13] Fidelity Bonds, https://en.bitcoinwiki.org/wiki/Fidelity_bonds,
2020

[14] Greg Maxwell, Transaction cut-through, https://bitcointalk.org/

index.php?topic=281848.0, Aug 26, 2013

51

https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://eprint.iacr.org/2019/360.pdf
https://eprint.iacr.org/2019/360.pdf
https://www.treasury.gov/press-center/press-releases/Documents/upas.pdf
https://www.treasury.gov/press-center/press-releases/Documents/upas.pdf
https://github.com/lightningnetwork/lightning-rfc/pull/688
https://github.com/lightningnetwork/lightning-rfc/pull/688
https://arxiv.org/abs/1712.10222
http://web.stanford.edu/~milgrom/publishedarticles/ValueOfInformation.pdf
http://web.stanford.edu/~milgrom/publishedarticles/ValueOfInformation.pdf
https://lightning.engineering/posts/2020-03-30-lsat/
https://lightning.engineering/posts/2020-03-30-lsat/
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://www.iacr.org/archive/eurocrypt2007/45150228/45150228.pdf
https://www.iacr.org/archive/eurocrypt2007/45150228/45150228.pdf
https://eprint.iacr.org/2020/1261.pdf
http://www.sci.brooklyn.cuny.edu/~parsons/courses/7412-fall-2011/papers/bluffers-final.pdf
http://www.sci.brooklyn.cuny.edu/~parsons/courses/7412-fall-2011/papers/bluffers-final.pdf
https://arxiv.org/abs/1112.4980
https://en.bitcoinwiki.org/wiki/Fidelity_bonds
https://bitcointalk.org/index.php?topic=281848.0
https://bitcointalk.org/index.php?topic=281848.0

[15] Peter Cramton, Innovation and Market Design, http://www.cramton.

umd.edu/papers2005-2009/cramton-innovation-and-market-design.

pdf, May 9, 2008

[16] Peter Cramton, Market Design: Harnessing Market Methods to Improve
Resource Allocation, http://www.cramton.umd.edu/papers2010-2014/

cramton-market-design.pdf, Oct 16, 2010

[17] Thomas Kerin & Mark Friedenbach, BIP 113, https://github.com/

bitcoin/bips/blob/master/bip-0113.mediawiki, Aug 10, 2016

[18] gmaxwell, Transaction cut-through, https://bitcointalk.org/index.

php?topic=281848.0, Aug 10, 2016

[19] Lightning Network Developers, BOLT #2: Peer Protocol for Channel
Management, https://github.com/lightningnetwork/lightning-rfc/

blob/master/02-peer-protocol.md,

[20] Lightning Network Developers, BOLT #4: Onion Routing Protocol,
https://github.com/lightningnetwork/lightning-rfc/blob/master/

04-onion-routing.md,

[21] Lightning Network Developers, BOLT #3: Bitcoin Transaction and Script
Formats, https://github.com/lightningnetwork/lightning-rfc/

blob/master/03-transactions.md,

[22] Lightning Network Developers, BOLT #7: P2P Node and Chan-
nel Discovery, https://github.com/lightningnetwork/lightning-rfc/
blob/master/07-routing-gossip.md,

[23] Alfred E. Kahn, Peter C. Cramton, Robert H. Porter, Richard D.
Tabors Uniform Pricing or Pay-as-Bid Pricing: A Dilemma for
California and Beyond, ftp://cramton.umd.edu/papers2000-2004/

kahn-cramton-porter-tabors-uniform-or-pay-as-bid-pricing-ej.

pdf, 2001

[24] Eric Budish, Peter Cramton, John Shim, THE HIGH-FREQUENCY
TRADING ARMS RACE: FREQUENT BATCH AUCTIONS AS A MAR-
KET DESIGN RESPONSE, https://faculty.chicagobooth.edu/eric.
budish/research/HFT-FrequentBatchAuctions.pdf, November 2015

[25] Bitrefill, Thor: Lightning Channel-Opening Service, https://www.

bitrefill.com/thor-lightning-network-channels/?hl=en, Jan 9, 2019

[26] Olaoluwa Osunoktun, chanfunding: create new package to abstract over
funding workflows, https://github.com/lightningnetwork/lnd/pull/

3659, Oct 31, 2019

[27] Eugene Siegel, rpc: bi-directional streaming for predicate-based channel ac-
ceptance, https://github.com/lightningnetwork/lnd/pull/3039, May
3, 2019

[28] Lisa Neigut & Casey Rodamor, Proposal for Advertising Channel Liquid-
ity, https://lists.linuxfoundation.org/pipermail/lightning-dev/

2018-November/001532.html, Nov 7, 2018

52

http://www.cramton.umd.edu/papers2005-2009/cramton-innovation-and-market-design.pdf
http://www.cramton.umd.edu/papers2005-2009/cramton-innovation-and-market-design.pdf
http://www.cramton.umd.edu/papers2005-2009/cramton-innovation-and-market-design.pdf
http://www.cramton.umd.edu/papers2010-2014/cramton-market-design.pdf
http://www.cramton.umd.edu/papers2010-2014/cramton-market-design.pdf
https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki
https://bitcointalk.org/index.php?topic=281848.0
https://bitcointalk.org/index.php?topic=281848.0
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md
ftp://cramton.umd.edu/papers2000-2004/kahn-cramton-porter-tabors-uniform-or-pay-as-bid-pricing-ej.pdf
ftp://cramton.umd.edu/papers2000-2004/kahn-cramton-porter-tabors-uniform-or-pay-as-bid-pricing-ej.pdf
ftp://cramton.umd.edu/papers2000-2004/kahn-cramton-porter-tabors-uniform-or-pay-as-bid-pricing-ej.pdf
https://faculty.chicagobooth.edu/eric.budish/research/HFT-FrequentBatchAuctions.pdf
https://faculty.chicagobooth.edu/eric.budish/research/HFT-FrequentBatchAuctions.pdf
https://www.bitrefill.com/thor-lightning-network-channels/?hl=en
https://www.bitrefill.com/thor-lightning-network-channels/?hl=en
https://github.com/lightningnetwork/lnd/pull/3659
https://github.com/lightningnetwork/lnd/pull/3659
https://github.com/lightningnetwork/lnd/pull/3039
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-November/001532.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-November/001532.html

[29] Peter Todd, BIP 65, https://github.com/bitcoin/bips/blob/master/
bip-0065.mediawiki, Oct 10, 2014

[30] ZmnSCPxj, Towards a Market for Liquidity Providers – Enforc-
ing Minimum Channel Lifetime, https://lists.linuxfoundation.org/

pipermail/lightning-dev/2018-November/001555.html, Nov 10, 2018

[31] ZmnSCPxj, Smart Contracts Unchained, https://zmnscpxj.github.io/
bitcoin/unchained.html, October 2020

[32] O�guzhan Ersoy, Stefanie Roos and Zekeriya Erkin, How to profit from pay-
ments channels, https://arxiv.org/pdf/1911.08803.pdf, October 2020

[33] ScaleSphere Foundation Ltd. (”Foundation”), Celer Network: Bring
Internet Scale to Every Blockchain, https://www.celer.network/doc/

CelerNetwork-Whitepaper.pdf, June 26, 2018

[34] Tom Walther, Multi-token Batch Auctions with Uniform Clear-
ing Prices, https://github.com/gnosis/dex-research/blob/master/

BatchAuctionOptimization/batchauctions.pdf, September 3, 2020

53

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-November/001555.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-November/001555.html
https://zmnscpxj.github.io/bitcoin/unchained.html
https://zmnscpxj.github.io/bitcoin/unchained.html
https://arxiv.org/pdf/1911.08803.pdf
https://www.celer.network/doc/CelerNetwork-Whitepaper.pdf
https://www.celer.network/doc/CelerNetwork-Whitepaper.pdf
https://github.com/gnosis/dex-research/blob/master/BatchAuctionOptimization/batchauctions.pdf
https://github.com/gnosis/dex-research/blob/master/BatchAuctionOptimization/batchauctions.pdf

	Introduction
	Our Contributions

	Background
	Payment Channels & the Lightning Network
	Liquidity Boostrapping Problems in the Lightning Network
	New Routing Node Boostrapping
	New Service Boostrapping
	End User Boostrapping
	Market Design & Auction Theory
	Money Markets & Capital Leases

	Bootstrapping Problems as Solved by CLM
	Bootstrapping New Users via Sidecar Channels
	Demand Fueled Routing Node Channel Selection
	Bootstrapping New Services to Lightning
	Cross-Chain Market Maker Liquidity Sourcing
	Instant Lightning Wallet User On Boarding
	Variance Reduction in Routing Node Revenue

	The Channel Lease Marketplace
	High-Level Description
	Lightning Channel Leases
	Non-Custodial Auction Accounts
	Order Structure & Verification
	Auction Design
	Auction Specification

	The Shadowchain: A Bitcoin Overlay Application Framework
	High-Level Description
	Comparison To Related Frameworks
	The Shadowchain Framework
	Shadowchain Orchestrator
	Lifted UTXOs
	The Shadowchain
	Shadowchain Operation

	Lightning Pool: A Channel Liquidity Marketplace as a Shadow Chain
	Instantiating a CLM
	System Initialization
	Lightning Pool Accounts
	Channel Leases in the Lightning Network
	Order Structure
	Node Rating Agencies
	Uniform Price Market Clearing & Matching
	Auction Batch Execution
	Sidecar Channel Market Clearing & Batch Execution
	LSAT as Pool Tickets

	The Lightning Pool Shadowchain
	Lightning Pool Accounts as Lifted UTXOs
	Auction Batch Proposal
	Shadowchain Batch Execution
	Unconfirmed Batch Cut-Through
	Auction Upgrades

	Security Analysis
	Future Directions
	Related Work
	Conclusion

